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Abstract: The paper establishes a new procedure to obtain the solution for the discrete optimal tracking problem 
based on dynamic programming. The optimal control refers to a quadratic criterion with finite final time, 
regarding a perturbed discrete invariant linear system. The proposed algorithm can be easier implemented by 
comparison with other procedures. 
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1   Introduction 
 
A perturbed discrete linear invariant multivariable 
system is considered 

x(k 1) Ax(k) Bu(k) w(k)
y(k) Cx(k)

+ = + +
=

 (1) 

where nx(k) x(k )= τ ∈ℜ  is the state vector (τ is the 
sampling period, k ∈ Z), mu(k)∈ℜ  is the control 
vector, ry(k)∈ℜ  is the output vector and 

nw(k)∈ℜ  is the disturbance vector.  
 The problem is to ensure that the output vector 
y(k) evolves near to a desired trajectory rz(k)∈ℜ  
and that the energy consumption has a low level. 
For this purpose, it is introduced the criterion 
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(T denotes the transposition), where S≥0, Q≥0, P>0 
are the weight matrices of appropriate dimensions 
and  

e(k) z(k) y(k) z(k) Cx(k)= − = −  (3) 

is the tracking error.  

The optimal tracking problem refers to the system 
(1) and the criterion (2). If the pair (A,C) is 
completely  observable, the problem can be 
reformulated as one referring to the state vector 
[1],[2] and thus the criterion is 
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where 

T

T

S C QC 0,
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′ = ≥
 (5) 

Let us consider V(k,x(k)) the minimum value of the 
criterion (4) within the interval [k, kf]. V(k,x(k))  is 
defined as: 

u(k)
V(k, x(k)) min I(x(k),u(k))=  (6)  

According to dynamic programming, the minimum 
cost function V(k,x(k)) may be written [2] 

V(k,x(k))=L(k,x(k),u(k))+V(k+1,u(k+1)) , (7) 
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where L(.) denotes the expression included in square 
brackets in the criterion (4). 
The optimal control vector is computed taking into 
account the following equation: 

u

u

u(k) argmin (V(k,x(k))

argmin[L(k,x(k),u(k)) V(k 1,x(k 1)]

= =

+ + +
 (8) 

If V(k,x(k)) is imposed as 

T T1V(k,x(k)) x (k)R(k)x(k) x (k)g(k)
2

= +  (9) 

( g(k) depends on z(k) and w(k)), thus V(k,x(k)) is 
the solution to the equation (7) only if the 
symmetric matrix R~ verifies the difference 
matriceal Riccati equation  

T 1 T 1
nR(k) Q A R(k 1)[I BP B R(k 1)] A− −= + + + +  (10) 

with 

'
fR(k ) S=  (11) 

and g(k)  satisfies a linear difference equation. 
 Matrix R(k)  is time variant even in the cases 
when the matrices of the system (1) and of the 
criterion (2) are constant. It means that the resulting 
optimal controller is time variant even in the case of 
an invariant linear quadratic tracking problem. 
Solving in inverse time of the equation (10) 
introduces a supplementary difficulty in the 
implementation of this controller. 
 In order to avoid these difficulties, another way 
for optimal controller computing is proposed in this 
paper. A simple solution for the controller 
implementation in the time-invariant case is 
presented. The controller is built only with invariant 
blocks. Note that the presence of exogenous vectors 
z(k) and w(k) complicates the solution, since appear 
the additional terms. 
 
 
2   Main Results 
 
The following form for the minimum cost function 
V(k,x(k)) is proposed 

T T

n

1V(k,x(k)) x (k)Rx(k) x (k)v(k) (k)
2
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= + + η
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with R constant symmetrical positive definite 
matrix. 
From the transversality condition, yields 
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Introducing (12) and (1) in (7) one obtain 
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The optimal control vector results from:  

V(k,x(k)) 0
u(k)

∂
=

∂
 (15) 

Replacing (14) in (15), yields 

( )T T

T T

P B RB u(k) B RAx(k)

B Rw(k) B v(k 1) 0

+ + +

+ + + =
 (16) 

and optimal control becomes 

T 1 T

T T

u(k) (P B RB) [B RAx(k)

B v(k 1) B Rw(k)]

−= − + +

+ + +
 (17) 

One can write 

f cu(k) u (k) u (k)= + , (18) 

with 

fu (k) Kx(k)= , (19) 
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and 
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1 1_ _
T T

cu (k) P B v(k 1) P B Rw(k)
− −

= − + −  (21) 

The feedback component fu (k)  is identical with the 
one obtained in the similar optimization problem 
with infinite final time. The corrective component 

cu (k)  ensures the coincidence with the solution 
obtained in the usual procedure, when the form (9) 
is used. 
Introducing now (17), (18) and (19) in (14) one 
obtain 
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Comparing (22) and (12), yields: 

T T TR Q A RA K B RA′= + +  (23) 

_
T T T

c c
T T T T

T T

v(k) C Qz(k) K P u (k) A RBu (k)

A Rw(k) K B Rw(k) A v(k 1)

K B v(k 1)

= − + + +

+ + + + +

+ +

 (24) 

_
T T

c c

T T T
c

T T T
c

1 1w(k) z (k)Qz(k) u (k)P u (k)
2 2

w v(k 1) u (k)B v(k 1)
1u (k)B Rw(k) w (k)Rw(k) (k 1)
2

= + +

+ + + + +

+ + + η +

 (25) 

 The equation (23) can be computed recurrently, 
starting from a certain positive defined initialisation 
for R. 
 
The minimum cost function V(k,x(k)) may be 
written in the form (22), where R is solution to the 
algebraic Riccati equation (23). Moreover, v(k) and 
w(k) satisfy equations (24) and (25). 
Introducing (21) in (24) one obtain: 
 

v(k) Zv(k 1) h(k)= + + , (26) 

with 

1_
T TZ A (I RBP B )

−

= −  (27) 

Th(k) ZRw(k) C Qz(k)= −  (28) 

Taking into account equations (13) and (12) for 
k=kf, yields 
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This condition is satisfied if one chooses: 

T
f f f
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1 z (k )Sz(k )
2

′η = − − +

+
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and 

T
f f fv(k ) (S R)x(k ) C Sz(k )′= − −  (31) 

From (26) one can obtain  

f
f f

k k
k k k k j

f f
j 1

v(k) Z v(k ) Z h(k j)
−

− − −

=
= + −∑   (32) 

It is not possible to compute the vector v(k) in real-
time because the final condition fv(k ) given by (31) 
is not a priori known. Therefore, the final value 

fv(k )  must be expressed as a function of 0x(k ) .  
If the control vector given by (18) is replaced in (1), 
the system equation becomes: 

cx(k 1) Fx(k) Bu (k) w(k)+ = + +  (33) 

with 

F A BK= +  (34) 

The solution to the discrete equation (33) is 
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From (35) for k=k0 , (21) and (26) yields 
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Replacing v(kf-j) from (32) in (36) and considering 
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yields 

1
f 0x(k ) M [x(k ) g]−= −  (39) 

Taking into account the above quations, the final 
result for v(k) is: 

f
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Remark 1: The expression of g given by (38) can be 
computed only if the exogenous vectors z(k) and 
w(k) are beforehand known. Therefore, the problem 
can be solved only under this assumption, or, at 
least, the shape of these vectors is known and their 
amplitude is estimated at the beginning of the 
optimization process. 
 
Remark 2: The above relations allow 
implementation of the optimal controller using only 
invariant blocks. These relations are rather 
complicated, but most of them are computed off-

line, in the design stage of the controller. The real-
time computation implies the finding of a usual state 
feedback component fu (k)  (19) and the 
computation of the corrective component cu (k) . 
The last component can be computed from (21) and 
(26) as 

1 1_ _
T 1 T

cu (k) P B Z [v(k) h(k)] P B Rw(k)
− −

−= − − − (41) 

 The corrective component depends on v(k) given 
by (40). 
 
Remark 3: Using (20), equation (23) can be written 

1_
T T TR Q A RA A RBP B RA

−

′= + −   (42) 

In a previous paper [4] starting from the necessary 
minimum condition referring to the Hamiltonian, a 
following Riccati equation was obtained: 

T 1 1 T 1R Q A (R BP B ) A− − −′= + +  (43) 

instead of the equation (42). Both results are similar.  
Indeed, using the identity: 

1_
1 1 T 1 T(R BP B ) R RBP B R

−
− − −+ = − ,  (44) 

one can observe that equation (42) is the same as  
(43). The form (43) is more advantageous than (42) 
in the case m<<n, because it implies to compute a 
reduced order inverse matrix.  
 
 
3  Numerical Example 
 
The behaviour of the optimal system was simulated 
for different system equations and weight matrices 
in the criterion. An example for a 4th order system 
with two control variables is presented in the 
following. We start from the next continuous time 
system and the equation (1) is obtained via 
discretization. 

[ ]

2 0 0 0 4 0 1
0 2 0 0 0 4 1

x(t) x(t) u(t)
2 4 1 0 0 0 1
4 2 0 1 0 0 1

y 1 0 0 0 x(t)

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=
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The sampling period is τ=0.002 seconds and the 
final time corresponds to kf=300; the matrices in (2) 
are chosen as follows: S=1.5, Q=20, p=diag(1,1). 
The initial state vector is considered to be 

[ ]Tx(0) 5 5 8 4= − − − . The desired trajectory 
for the 1x  output is z(k)=30k. 
 The behaviour of the optimal control system is 
presented in the next figure. 
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 These results were comparatively verified with 
the ones obtained by using a classical method and 
are nearly related to the continuous time case [5]. 
 
 
4  Conclusions 
The optimal tracking problem for a discrete linear 
invariant system is studied, tacking into account the 
presence of the disturbances. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The proposed algorithm are more convenient for 
implementation by comparing with the usual 
procedures. 
 An efficient possibility of the implementation for 
the optimal controller in a time-invariant problem, 
using only time-invariant blocks is also proposed. 
The control consists in a state feedback and a 
correction depending on the initial state and on 
exogenous vectors. 
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