
Master-Slave Distributed Architecture for Membrane Systems
Implementation

Ginés Bravo1, Luís Fernández2, Fernando Arroyo2, Jorge Tejedor3

Grupo de Computación Natural
1Centro de Cálculo

2Lenguajes, Proyectos y Sistemas Informáticos
3Organización y Estructura de la Información

Escuela Universitaria de Informática
Universidad Politécnica de Madrid

Carretera de Valencia, km 7, 28031, Madrid
Spain

{gines;setillo;farroyo;jtejedor}@eui.upm.es

Abstract: - P System computational power lies in its non-deterministic, distributed and massively parallel nature.
So, it would be desirable for every implementation of a P System to achieve, as far as possible, these features. In
this paper, we suggest a distributed architecture of processors called master-slave, in which communications are
directed by a single processor, called ‘master’, and a series of processors called ‘slaves’ whose task is to apply
evolution rules to the multisets they receive from the master. To prevent collision and network congestion,
communications between master and slaves occur in an organized way. Furthermore, some membranes are
allocated in each processor and, finally, proxies are used to communicate with membranes allocated in different
processors. All this yields better parallelism in the system as a whole than in previously published studies. In
addition to this, we present an analytic study that establishes a series of equations that allows us to accurately
determine the optimum number of processors needed, the required time to execute an evolution step, the number
of membranes to be located in each slave processor and the conditions that will determine when it is best to use
this distributed solution or the ones that have previously been proposed, and even the sequential one.

Keywords: Architecture, Bottleneck, Communication, Master-Slave, P Systems

1 Introduction
The possibilities that natural computation offers and,
in particular, the Transition P Systems, for the
resolution of problems have led researchers to focus
their work on hardware and software
implementations of this new model of computation.
Transition P systems were presented by Gheorghe
Pãun in 1998 [1], who based his work on basic
features of biological membranes. A membrane
defines a region where a series of chemical elements
(multisets) may undergo a series of chemical
reactions (evolution rules) and produce other
elements. Inside the region limited by a membrane
there may be, at the same time, other membranes
creating a complex, hierarchical structure that can be
represented by a tree. Products generated by the
chemical reactions may stay in the same region or
travel to container region or to the regions contained
by a membrane. As a result of this reaction, a
membrane may dissolve itself - its chemical elements
transfer to the container membrane - or inhibit itself
(the membrane becomes impermeable and does not
allow any object to pass).

Membranes systems are dynamic as the chemical
reactions inside them produce elements that cross the
frontiers of the membranes, travel to other regions
and produce new reactions. This dynamic behavior
can be sequenced in a series of evolution steps
between one and another configuration system that
will be determined by the membrane structure and
multisets present within membranes. In the transition
P systems formal model two phases are distinguished
in each evolution step: rules application and
communication. In the rules application phase, its
rules are applied inside each membrane, in a
exhaustive and non deterministic way, to the
multisets in parallel. Once the previously described
phase has concluded, the communication phase
begins and the multisets generated travel towards the
target membranes. These systems perform a
computation through transition between two
consecutive configurations, transforming themselves
into computational devices with the same capacities
as Turing machines.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 326

The power of this computation model lies in the fact
that the process is massively parallel in the rules
application phase as well as in the object
communication phase. The challenge for researchers
is to achieve hardware or software implementations
of P systems with a high degree of parallelism.

The aim of this paper is to achieve a distributed
implementation of a P System whose step evolution
time is as short as possible by increasing parallelism
in both application and communication phase.

The paper is structured as follows: first, related works
are enumerated and the proposed architectures
analyzed; next, a communication architecture model
is introduced stating its economical and
computational cost as well as its viability; then, a
more detailed analysis is offered of the model and,
finally, conclusions are drawn.

2 Related Works
A large number of studies propose implementations
of a P system in a single processor [2], and these are
strictly sequential in nature.

On the contrary, few papers have addressed the
possibility of implementation of a distributed cluster
of processors. Syropoulos [4] and Ciobanu [3], in
their distributed implementations of P systems, use
Java Remote Method Invocation (RMI) and the
Message Passing Interface (MPI) respectively, on a
cluster of PCs connected by Ethernet. These authors
do not provide a detailed analysis of the importance
of the time used during the communication phase in
the total time of P system evolution, although
Ciobanu states that “the response time of the program
has been acceptable. There are, however, executions
that could take a rather long time due to unexpected
network congestion” [3]. Specifically,
implementation of the second phase of an evolution
step, communication between membranes, has not
received the same level of attention from the research
community.

The paper by Tejedor [5] reviews two models of
communication software architectures and proposes
an alternative. The first, called “parallel
application/parallel communication,” consists of an
implementation that reflects the massively parallel
nature of P systems: each processor has a membrane
and it will have as many communication interfaces as
children. Nowadays, this is unfeasible because
current technology does not allow a processor to have
as many communication interfaces as membranes are
connected to it.

The second approach, called “parallel
application/sequential communication”, is more
realistic because it is more feasible technologically:
all processors are connected to a common bus
through a communication interface governed by a
protocol. However, this is also unfeasible because
massive amounts of time are used in an evolution
step, and this time grows lineally with the number of
membranes, even causing network congestion.

For his part, Tejedor [5] proposes “distributed
architecture with both application and communication
phases partially parallel”. To achieve this, he relies
on the following pillars:

1. In each processor, K membranes are located that

will evolve, at worst, sequentially. Where

P
MK =

, K ≥ 1 (1)
And M is the total number of membranes of the P
System and P the number of processors of the
distributed architecture. Physical interconnection
between processors is through a common
communications line. In this scenario, there are
two sorts of communications:
• Internal communications are those between

membranes in the same processor.
Communication times are negligible because
they occur through use of shared memory
techniques.

• External communications are those between
different processors because the membranes
that need to communicate are in different
processors.

The benefit obtained is that the number of the
external communications decreases.

2. Creation of proxy. Membranes in different

processors do not communicate directly. Instead,
they communicate through proxies in their
respective processors. Proxies are used to
communicate between processors. A proxy
handles the communications between the
membranes in a processor and the proxy of
another processor. In the same way, information
received from other proxies is redistributed to the
membranes in its own processor.

The benefit of using proxies in communication
among membranes instead of direct
communication is double. First, the N packets
necessary to achieve communication of N
membranes with the same parent are transformed

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 327

into a single packet which length is the
corresponding to a single multiset. Second, given
that communication protocols penalize the
transmission of small packets due to protocol
overhead, communicating N messages of L
length is slower than one message of (N * L)
length.

3. Topology in a processor tree. The benefit of a

topology in an interconnection tree among
processors lies in how it minimizes the total
number of external communications carried out,
because proxies exchange information only with
its immediate antecessor and direct successors
and thus, the total number of external
communications is 2(P-1).

4. Token passing in communication to prevent
collisions and network congestion. For each
processor, a communication order is established.
As a result, no more than one proxy can attempt
to transmit at any given time.

The analysis of this distributed architecture by [5] is
as follows:

• This solution prevents communication collisions

and reduces the number and length of the
external communications.

• In this model, the minimal time is expressed in
the formula:

 comcomapl TTTMT 222min −=
 (2)

Where, Tapl is the maximum time used by the
slowest membrane in applying its rules, and Tcom
is the maximum time used by the slowest
membrane for communication.

• The number of membranes housed per processor
that makes the time minimal is:

apl

com
opt T

TMK 2
=

 (3)

• The number of processors that make the time
minimal is:

 com

apl
opt T

TM
P

2
=

 (4)

• Also, this architecture is highly scaleable, at a
moderate cost. The cost is moderate compared to

previously proposed architectures because the
latter required a total number of processors (P)
which was equal to the number of membranes
(M); however, this architecture needs only
about M .

• From a throughput perspective, the system is
more balanced than previous ones to the extent
that an operating percentage of 50% is
maintained in processors and communications.

• Also, it offers better step evolution times than
one-processor solution when the P System’s
number of membranes is:

 apl

com

T
TM 8>

 (5)

3 Master-Slave Distributed
Architecture
This paper presents a new distributed architecture
which, like previous architecture, maintains the
parallelization of the application phase, but also seeks
to parallelize the rule application phase in some
processors with the communication phase in others.
To do this, a series of processors will take on the role
of slaves and one processor will act as the master.
Moreover, all will be linked by a common
communications medium. The functions of each are
as follows:

• Each slave (PS) houses K membranes, processes

multisets and sends the master multisets whose
destination is in a membrane in another slave.

• The master (PM) redistributes the multisets to the
proper slaves. The master contains no
membranes.

(1) (2)

(5) (6)

(4)

(8)

(3)

(7)

Figure 1. Master-Slave Distributed Model: One
Master and Four Slaves

The innovative aspect of this model is that when a
slave processor receives multisets from the master, it
begins to apply rules autonomously (and parallel)
from the other slave processors. Thus, while

PS1 PS2 PS3 PS4

PM

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 328

communication is occurring – master with the slaves
– some slave processors are applying rules. That is,
the external communication time overlaps with the

application time, which is not the case in [5]. The
timeline in figure 2 shows when the two phases of an
evolution step occur in different processors:

Figure 2. Timeline for Master-Slave Distributed Model with One Master and Four Slaves

E3
E4

E2

E1
M

 1st Evol. step

Tcom

ty tz
Tapl

tx

 2nd Evol. step 3rd Evol. step 4th Evol. step

As always, the time of an evolution step is from the
moment processors apply their rules until results
reach the destination membranes. In this model, the
first evolution step, slaves already have their
multisets and begin to apply their rules immediately.
Now, in the result communication phase of this first
evolution step, at the tx moment when the master
sends the firs slave the multisets to be processed, this
slave begins to apply rules in what is now the second
evolution step.

This overlapping of evolution steps is repeated for the
remainder. From that moment onward, overlapping
occurs because of the parallelism between the
communication phase and application of rules; that is,
because while the master is sending multisets of an
evolution step, there are slave processors applying
rules in the next evolution step. This parallelism
occurs from the moment the master communicates
with the first slave until it sends the multiset to the
last slave (interval tx-ty).

Finally, there is also parallelism in the rule
application phase, for it can be seen that in the time
interval delimited by ty-tz, all slave processors are
applying rules simultaneously.

3.1 Bases of New Model
As in the Tejedor model [5]:
1. There are K membranes in each slave processor

in order to increase the number of internal
communications - whose communication time is
negligible – and thereby reduce the total number
of external communications.

2. There is a proxy in each of the processors so that
communication between their membranes
(master-slave and vice-versa) is through proxies.

The following pillars are specific to the model
proposed herein, and which seek to improve the
architectures described above:

3. Order in Communications. To eliminate

collisions and congestion of the common
communication medium, there is an order of
communication with the slaves. For this reason,
each of the slave processors will receive an order
number (or position) so that communications in
the two directions (master slave and slave
master) are orderly. Specifically, the
communication policy consists of the following:

• The master: distributes work (multisets) to

different slaves. When it finishes delivering
work, it awaits results from slaves

• The slaves: begin to apply evolution rules to

a multiset as soon as they receive them from
the master. When they complete application
of evolution rules, they have to communicate
their results to the master. However, to
prevent collisions with other slaves, they wait
their turn to do so. Since slaves need not end
in order, and because they may have to wait
to communicate with the master,
communications are in broadcast mode, so
the rest will know when it is their turn to
broadcast.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 329

4. Flat communications architecture: slave
processors do not communicate among
themselves, but only with the master; for its part,
the master processor communicates only with
slave processors. In this scenario, communication
occurs at a single level - from many to one and
from one to many - that is, there are no
hierarchies or connection trees between
processors. The physical interconnection between
master and slave is through a common
communication line.

4 Detailed Analysis of Master-Slave
Model
In this model, given that each slave processor has K
membranes, the total time of the rule application
phase is K * Tapl. Thus, the time (T) to execute a
complete evolution step – i.e., delivery of multisets to
slaves, rule application time and return of results - is
as follows:

 (6))1(++= PTTKT comapl

One of the most important parameters which will
determine if the architecture is valid is the total
number of slave processors (Popt) needed to make the
evolution step time minimal. Thus, we set the time
(6) according to the number of processors and
achieve:

 com

apl
opt T

TM
P =

 (7)

Hence, by replacing in (6) the optimal number of
slave processors (7), the minimal time (Tmin) needed
for an evolution step is:

 comcomapl TTTMT += 2min (8)

For its part, the optimal number of membranes (Kopt)
with regards to the optimal number of slave
processors (Popt) which gives a minimal time (Tmin) is:

 apl

com
opt T

TMK =
 (9)

The expressions that determine the throughput of the
processor (Thproc) and of the communication line
(Thcom) are the following:

 comcomapl

comapl
proc TTTM

TTM
Th

+
=

2
 (10)

 comcomapl

comapl
com TTTM

TTM
Th

+
=

2

2

 (11)

If we ignore the value of Tcom, expressions (10) and
(11) are reduced to Thproc≈0.5 and Thcom≈1, then the
system achieved is balanced, in terms of processor
performance, and the communication line is fully
occupied.

Finally, the cost of the system is approximately
double that of the model “architecture with
application and communication partially parallel”
because double the number of processors is required
for the same P System.

4.1 Possible Time Improvements
Given that occupation of the communication line, i.e.,
throughput, is 100%, improving times of an evolution
step would require dealing with the other factor
involved, namely the rule application time. In fact, it
is feasible for software engineers to make the rules of
K membranes in a processor apply more quickly by
developing quicker sequential algorithms and making
them execute in parallel. If Tapl can be made to be N
times faster, and if we apply it to the equations Kopt
(9), Popt (7) and Tmin (8), we will see that both the
number of membranes executed in a processor and
the time required to execute an evolution step would
improve by approximately a N factor, while the
number of processors required would be divided by
the same N factor

4.2 Advantages of Distributed Model Over

One-Processor Model
The time required to execute an evolution step in an
architecture of one processor, and therefore no
external communications, is:

 aplTMT = (12)
As this paper has presented a new distributed master-
slave architecture that offers evolution step times
determined by (8), it would be interesting to know,
for a given P system, at what number of membranes
would it be better to use the latter or one based on a
single processor. That is, in what conditions is (8)
lower than (12):

 aplcomcomapl TMTTTM 〈+2
 (13)

In resolving the inequality we get the expression
below, which indicates that when the number of

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 330

membranes of the P system is greater than that value
– which is a constant – the solution with a number of
processors is superior.

 apl

com

T
TM 8.5〉

 (14)

5 Comparative Analysis
As the model proposed by Tejedor [5] offers
reasonable times and costs, we shall compare it with
the model proposed herein in order to ascertain which
can be more efficient:

A. By comparing expressions of the minimal times

(9) and (2), and given that Tcom is negligible
compared to the high number of membranes (M),
we obtain a proportion of 2

1 , that is, that this
new model reduces the minimal time by 30%.
This model achieves better times for the
following reasons:

a) In [5], the communication phase can begin

only when all the processors are done
applying their rules. However, in the model
proposed herein, the application of the
evolution step ‘n’ is parallelized with the
communication stage of the previous step ‘n-
1’. Hence, there is a parallelism between
rules application and external
communications: while there is processing,
there is communication.

b) By comparing the expressions of the optimal

number of processors (7) and (2) we reach
the formal conclusion that this model has
double the number of processors. This
increase in the number of processors means
that in the rule application phase there is a
higher degree of parallelism.

c) As a consequence, if there are more

processors for the same number of
membranes (M), there will be fewer
membranes per processor. Indeed, by
comparing the expressions (9) and (3), it can
be seen that there are half the number of
membranes per processor in this new model,
which means that the application time in
processors will be shorter.

B. To determine the number of membranes above

which the times (2) in the Tejedor model [5] are
longer than in the model herein (8), we obtain the
expression:

 apl

com

T
TM 11.13〉

 (15)

By comparing the values in (5), (14) and (15),
which indicates in terms of minimal times, above
what number of membranes (M) which
architecture is preferable, we obtain the
following chart:

Figure 3. Optimal architecture according to number
of membranes

C. Finally, but just as important, the simplicity of

this method of communication between the
master processor and the slaves makes it suitable
for implementation with low-cost micro-
controllers [6] for two reasons:

a) Precisely because it is a flat architecture, that

is, not hierarchical, it comfortably satisfies
the interconnection specifications
(synchronization and ICC communication
protocol) through a common data bus used in
these micro-controllers.

b) Requirements for processor resources and/or

memory are lower.

6 Conclusion
The software architecture proposed in this paper is
based on a master processor that distributes work to a
series of slave processors that apply rules. Moreover,
it places several membranes in each processor, uses
proxies for communication among processors,
flattens the communication architecture and, finally,
establishes an order in communications of nodes.

All these mechanisms offer improvements of
previously described architecture in several important
respects: minimal times of an evolution step, higher
degree of parallelism between rule application phases
and external communications, a lack of congestion in
the communication medium – even with a high
number of membranes -, independence of the
topology of the P system, possible implementation of
architectures based on micro-controllers and, finally,
though of no less importance, the architecture is
highly scalable and has moderate costs.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 331

References:
[1] Gh. Pãun, Computing with membranes, Journal of

Computer and System Sciences, 61, 1 (2000),
108-143

[2] G. Ciobanu, M. Pérez-Jiménez, Gh. Pãun.
Applications of Membrane Computing. Natural
Computing Series, Springer Verlag, (October,
2006).

[3] G.Ciobanu, W.Guo. P Systems Running on a
Cluster of Computers, Workshop on Membrane
Computing (Gh. Pãun, G. Rozenberg, A. Salomaa
Eds.), LNCS 2933, Springer, 123-139, 2004.

[4] A. Syropoulos, E.G. Mamatas, P.C. Allilomes,
K.T. Sotiriades, A distributed simulation of P
systems, A. Alhazov, C. Martin-Vide and Gh.
Pãun (Editors): Preproceedings of the Workshop
on Membrane Computing; Tarragona, July 17-22
2003, 455-460

[5]A. Tejedor, L. Fernandez, F. Arroyo, G. Bravo, An
architecture for attacking the bottleneck
communication in P systems. M. Sugisaka, H.
Tanaka (eds.), Proceedings of the 12th Int.
Symposium on Artificial Life and Robotics, Jan
25-27, 2007, Beppu, Oita, Japan, 500-505.

[6] A Gutierrez, L Fernández, F Arroyo, V Martínez.
Design of a hardware architecture based on
microcontroller for theimplementation of
membrane systems. Proceedings of the 8th
International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing.
Timisoara (Romania), September 2006, 39-42.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 332

