
Automatic Verification of Cryptographic Protocols in First-Order Logic

JIHONG HAN, ZHIYONG ZHOU AND YADI WANG

Zhengzhou Information Science and Technology Institute

No.12 Shangcheng East Road, Zhengzhou, Henan

CHINA

hnhanjh@yahoo.com

Abstract: - In this paper, a new first-order logical framework and method of formalizing and verifying

cryptographic protocols is presented. From the point of view of an intruder, the protocol and abilities of the

intruder are modeled in Horn clauses. Based on deductive reasoning method, secrecy of cryptographic protocols

is verified automatically, and if the secrecy is violated, attack scenarios can be presented through back-tracing.

The method has been implemented in an automatic verifier, many examples of protocols have been analyzed in

less then 1s.

Key-Words: - Cryptographic protocol, First-order logic, Automatic verification, Secrecy, Attack scenarios,

Deductive reasoning

1 Introduction
A cryptographic protocol is a precisely defined

sequence of communication and computation steps

using cryptographic mechanism, its aim is ensuring

the security of the transaction and communication in

network or distributed systems. The rapid extending

of the internet causes a growing need for

cryptographic protocols, but it is well known that the

design of such protocols is difficult and error-prone.

Therefore, it is necessary to study formal analysis

methods and automatic verification tools for the

cryptographic protocols. Researchers have adopted

many theories and techniques to build automatic

verification tools. The theories are mainly derived

from logic[1,3,6], algebra[7,8,9], complexity

theory[11,15] and automata theory[13], the popular

techniques are model checking[14,16,17] and

theorem proving[18,20, 3]. Verifiers based on model

checking suffer from the problem of the state space

explosion, while verifiers based on theorem proving

usually need manual intervention.

In this paper, we present a new formal approach

for automatic verification of cryptographic protocols.

This approach is fully automatic and terminable. The

main contributions of the paper are: a general

framework of formalizing cryptographic protocol

and abilities of the intruder, a practical solving

algorithm based on automatic reasoning, and a

simple method to find the attack scenarios.

2 Related Work
The logic-based approach has been proved to be

particularly well-suited for automation. Its early

application in analysis of cryptographic protocol is

Millen’s Interrogator[19]. Using Prolog, Interrogator

searches for instantiations of a goal signifying the

intruder’s knowledge of specified data which would

lead to an insecure state. Interrogator can find

protocol flaws successfully, but the search time

varies significantly depending on the precise format

of the protocol specification and the amount of

information about the insecure state, and the search

heuristics may prevent some flaws from being

noticed.

Combining the benefits of the finite state analysis

and the inductive method, C.Weidenbach develops

the automated theorem prover SPASS[3], in which

the protocols are formalized in monadic first-order

Horn logic. Based on sort resolution, he also proves

that parts of the used first-order fragments can be

decided. By taking Neumann-Stubblebine protocol

as an executing instantiation, he shows that SPASS

can automatically prove security properties of the

protocol and detect potential errors of an

implementation.

Blanchet’s verifier[12] is another efficient

automatic tool. It is based on logic programming and

abstractions, the protocol and attacker’s abilities are

specified by means of Prolog rules, cryptographic

primitives are represented by constructors and

destructors, fresh values are modeled as functions of

previously received messages of the principal. An

abstraction is made by forgetting the number of times

a message appears and remembering the fact that it

has appeared. The state of principals is not explicitly

maintained, principals’ rules are not ordered into

runs, the same rule can be applied more than once

and in different order with respect to the original

protocol. These approximations may lead to giving

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 283

“false attacks” despite they are rather rare. By a

two-phase algorithm based on resolution and

depth-first backward search, the verifier can prove

the secrecy of cryptographic protocols.

3 Modeling cryptographic protocols
Modeling the cryptographic protocol is the first step

of protocol verification. We use first-order theory to

formalize cryptographic protocols and intruders. The

final form of our method is similar to Blanchet’s, but

the modeling process is more regular and impersonal.

We assume that messages transmitted by each

principal can be received by the intruder, and

messages received by each principal can be known

by the intruder. We test the security of cryptographic

protocols at the standpoint of the intruder. The

intruder holds some initial knowledge, he can get

information by observing the communications

between principals, and gain knowledge by comput-

ing on the basis of known information. So, the

protocol representation includes three parts: initial

knowledge of the intruder, message exchange of the

protocol itself, and computation abilities of the

intruder.

3.1 Syntax of protocol representation
Our cryptographic protocol theory is expressed by

terms, predicate and implication rules.

The terms represent messages that are exchanged

between participants of the protocol. Constant

symbols, variables, and function symbols are used to

build terms. By convention, we use upper case to

denote constants, lower case to denote variables,

function and predicate begin with an upper letter.

In order to deduct efficiently, we introduce term

types to specify the structure of messages and

perform type check before computation. Term types

have the following structure.

τ, τ’::=msg message
|princ principal

|nonce nonce

| ident identifier
| key key

|compmsg compound message

key::=shK symmetric session key

|pubK public key

|privK private key

|longtK long-term key
compmsg ::=H[τ] hash value

|SC[τ, τ’] symmetric cipher

|AC[τ, τ’] asymmetric message cipher

|SN[τ, τ’] signature

|T[τ, τ’] tuple

A term has type τ can be represented by t: τ.
Constant symbol can be A, B, S, I, … which

represent principals and have type msg, or terms

which represent keys, nonces, identifiers etc. A

variable can represent any term. The typical function

symbols appear as below:

(m1,…,mn): tuple of messages, where mi(i=1,…n)

has type msg.

Host(x): identity of x: princ.

Pk(x): public key of x: princ.

Sk(x): private key of x: princ.

E(m,k): encrypt m: msg with k: shK

PE(m,pk): encrypt m: msg with pk: pubK

SG(m, sk): sign m: msg with sk: privK

H(m): hash of m: msg

Hk(m, k): keyed hash of m under key k

X(m, n): bitwise exclusive-or of m and n

Inc(m): addition of m by 1

The function value have certain types too.

The predicate has only one form of Intr(M) which

means “intruder knows M”. The implication rules

are used to formalize the protocol steps and intruder’s

computation abilities.

3.2 Protocol specification
A protocol is composed of some communication

steps executed by protocol principals. Every

principal plays a different role in the protocol.

Typically, the roles can be protocol initiator and

responder, there often exits a trusted third party in the

protocol too. We use axioms to depict the

communicating actions of each role. The intruder can

know all communications between the protocol roles.

When a role receives a message, the intruder also

know it, on the premise of receiving messages, the

role would generate a new message and transmit it,

the new message can be known by intruder too. The

predicate corresponding to role’s message receiving

can be affiliated to the axiom by logical connective ∧,

and the predicate corresponding to role’s message

transmitting can be the conclusion of the implication

relation. The universal quantification ∀ is used to

eliminate the limitation for protocol runs, and

existential quantification ∃ is used to denote

generating of key or nonce, and through renaming

and consistency check, ensure the refreshness and

boundlessness of the new value. For example, for the

Denning-Sacco key distribution protocol which can

be expressed as follow:

1．A→S: A, B

2．S→A: Pk(A), Pk(B)

3． A→B: Pk(A), Pk(B), PE(SG(k, Sk(A)), Pk(B))

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 284

4．B→A: E(s, k)

where A and B are two principals whose goal is to

establish a shared private key k. Pk (A) and Pk (B) are

public keys of A and B respectively, they are

contained in their digital certificates distributed by

the trusted server S. Step 4 is not really part of the

protocol, we include it for the purpose of secrecy

verification.

The input of protocol specification in our first

order logic can be shown as below:

Φi : ∀A, B (Intr(Host(A), Host(B)) ∧

Intr(Pk(A), Pk(B)) →∃ k

(Intr(pk(A), pk(B), PE (SG(k,

Sk(A)), Pk(B))∧ Intr(E(s,k))))

(1)

Φr : ∀A, B ∀k (Intr(Pk(A), Pk(B), PE (SG(k,

Sk(A)), Pk(B))) → Intr(E(s,k)))
(2)

Φs : ∀A, B (Intr(Host(A), Host(B)) →

Intr(Pk(A), Pk(B)))
(3)

The axiom Φi corresponds to the initiator role, Φr

corresponds to the responder role, and Φs

corresponds to the trusted server.

For brevity, we transform the axioms into Horn

clauses and remove the redundant facts, gain a set of

clauses:

∀A, B (Intr(Host (A), Host (B))) (4)

∀A, B ∃ k (Intr(Pk (A), Pk (B)) →

 Intr(PE (SG(k, Sk (A)), Pk (B))))
(5)

∀A, B ∃ k (Intr(Pk (A), Pk (B)) →

 Intr(E(s,k)))
(6)

∀A, B ∀k (Intr(Pk (A), Pk (B), PE (SG(k, Sk

(A)), Pk (B))) → Intr(E(s,k)))
(7)

∀A, B (Intr(Host (A), Host (B)) → Intr(Pk

(A), Pk (B)))
(8)

Then, we use a new name to replace the

existential quantifier by skolemization, for instance,

k[x] stands for generating a new name k depending

on x.

The initiator roles can not restrict their sent

messages to be accepted only by someone, and

responder roles can not know where their received

messages really come from. Assuming A and B are

legal principals and they are willing to talk to any

principals, we can transform (4)—(8) by removing

the existential quantifiers and universal quantifiers,

making resolution and eliminating the rules which

are implicated by other rules[12], finally we gain

formulae:

Intr (Host (x)) (9)

Intr (Pk (x)) → Intr (PE (SG(k[Pk (x)],

Sk (A)), Pk (x)))
(10)

Intr (Pk (x)) → Intr (E(s, k[Pk (x)])) (10)

Intr (PE (SG(k, Sk (A)), Pk (B))) →

Intr (E(s,k))
(12)

Intr (Host (x)) → Intr (Pk (x)) (11)

In order to construct the attack trace later, each

Horn clause above is associated with a message

number according to its conclusion, and the message

number can be passed to the new rule inferred by

resolution. We can notice that the rule(10) and (12)

are just the same rules representing the protocol in

[12]. From the instantiation of (9) and (13), we can

obtain the intruder’s initial knowledge in [12].

3.3 The intruder abilities
Following Dolev-Yao Model, the protocol is

executed in the presence of an intruder that can

intercept all messages, generate new messages from

the messages he has received, and send messages

whenever he wants to do so. An intruder can gain

information either by passive means, such as

eavesdropping and taking advantage of public

information, or by active means such as encrypting,

decrypting, reconstructing and replaying messages,

impersonating other principals. So the computation

abilities of the intruder can be represented as below:

Compose: Intr (n1) ∧ Intr (n2) ∧…∧ Intr

(nk)→ Intr (n1, n2, …nk)

for every k ≥ 0

(14)

Decompose: Intr (n1, n2, …nk) → Intr

(ni) for every k ≥ i ≥ 0
(15)

Encrypt: Intr (k) ∧ Intr (x) → Intr (E(x,

k)), for k: key, x:msg
(16)

Decrypt: Intr (E(x, k)) ∧ Intr (k) → Intr

(x) , for k: key, x:msg
(17)

Public Encrypt: Intr (x) ∧ Intr (Pk (y))

→ Intr (PE(x, Pk (y))),

for x:msg, y:princ

(18)

Public Decrypt: Intr (PE(x, Pk(y))) ∧

Intr (Sk(y)) → Intr (x) ,

for x:msg, y:princ

(19)

Sign: Intr (x) ∧ Intr (Sk(y)) → Intr

(SG(x, Sk(y))) , for x:msg, y:princ
(20)

Check Sign: Intr (SG(x, Sk(y))) ∧ Intr

(Pk(y)) → Intr (x) , for

x:msg, y:princ

(21)

Hash: Intr (x) → Intr (H(x)) (22)

Key Hash: Intr (x) ∧ Intr (k)

→ Intr (H(x, k))
(23)

Generate key: Intr (Sk (x)) → Intr (Pk

(x)) , for x, y:princ
(24)

Exclusive-or: Intr (x) ∧ Intr (y) → Intr

(X(x, y))
(25)

The intruder’s abilities also contain his initial

knowledge, such as:

Secret Key: Intr(Sk(I)) (12)

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 285

Public Key: Intr(Pk(I)) (13)

Here, Sk(I) and Pk(I) are the secret key and

public key of the intruder. (26) and (27) denote that

the intruder knows his own secret key and public key.

In addition, the intruder can gain some initial

information about the protocol and principals, such

as public keys of others.

4 Verifying the secrecy of

cryptographic protocol
We adopt deductive reasoning method to verify the

secrecy property of cryptographic protocols. If the

intruder can not obtain any information about

message M through interacting with the protocol, we

say that the protocol keeps the secrecy of M.

4.1 Verifying algorithm
we consider the secrecy property as a goal, and check

whether it can be inferred from the known rules. The

known rules form a rule base B containing the Horn

clauses of protocol description and abilities of the

intruder. If the goal can be inferred from the base, the

sequence of rules applied will lead to the description

of an attack scenario.
Definition 1 (Rule activation) Let F be a fact,

A rule is activated if its conclusion is unifiable with F.

Definition 2 (Provability) Let F be a closed

fact, and B be a set of Horn clauses. F is provable

from B, if and only if there exists a finite proof tree

defined as follow:

1. Its root node is F.

2. Its parent nodes are all conclusions of activated

Horn clause. A parent node and his son nodes denote

a rule, parent node is the conclusion and son nodes

are premises.

3. Its leaf nodes are all closed facts which are

contained in B or unifiable with facts in B.

Theorem If Intr(M) is not provable from the

initial facts and rules of our notation, then M is secret.

Prove The functions of cryptographic primitives

in our notation correspond to the constructor in [12],

and rules of intruder’s abilities implicate the function

of destructor. Rules representing the protocol are

logical equivalence with the model of Selinger[10],

we make a transform on the assumption that principal

A is the legal initiator and B is the legal responder,

this make A cannot play the role of B and vice-versa.

This is one of the remarks of Branchet[12] too. By

giving explicit names to subformulas, Selinger’

model can be translated to a linear logic model[2],

from a linear logic model which is simplified with

respect to the model[2], Branchet’s logic

programming rules can be inferred, so our notation

embodies Branchet’s prolog rules. Thus we can use

the idea of secrecy of Branchet’s[12], if Intr(M) is not

provable from the logic programming rules of our

notation, it is not derivable from the Branchet’s

notation, according to theorem 4 in [12], M is secret.

We use the converse deductive reasoning method

to prove the secrecy, the prove tree is established by

using Generalized Modus Ponens rule backwards.

The simplified deductive algorithm can be described

as below:

Derive (B,F) returns a series of applied rules and a set

of substitutions

Trace_rule = {}

Derive_list(B, [F],{})

End

Derive_list(B, qlist, curr_subst, Trace_rule)

If qlist is empty then return curr_subst,

Trace_rule

Sub={}

Sort(qlist)

Q←head(qlist)

 for each atom sentence Pi’ in B such that σi ←

Unify(Pi’, Q) succeeds and σi is in consistent with

curr_subst do

 Trace_rule = Trace_rule ∪ Pi’

Sub=sub∪ append(curr_subst, σi)

end

for each noncycle rule Ri =P1∧ P2∧…Pn→Qi in B

such that σi ← Unify(Qi, Q) succeeds and σi is in

consistent with curr_subst do

 Trace_rule = Trace_rule ∪ Ri’

 sub= sub ∪Derive_list(B, (σiP1,

σiP2,…σiPn), append(curr_subst, σi) ,

Trace_rule)

 end

return the union of Derive_list(B,

tail(qlist), curr_subst, Trace_rule)

for each substitution ∈sub

end

A cycle rule is the rule which is activated just

after their reverse computing rule has been activated.

The Compose and Decompose, Encrypt and Decrypt,

Public Encrypt and Public Decrypt, Sign and Check

Sign rules are all mutual reverse. If the two reverse

rules are activated in succession, it will cause

non-termination. So these cases should be avoided.

Otherwise, the search space is finite.

For the Denning-Sacco key distribution protocol

described above, we can find a proof tree shown in

fig.1.

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 286

Fig. 1. A proof tree for secrecy of Denning-Sacco protocol

4.2 Finding attacks
From the proof tree for the secrecy of Denning-Sacco

protocol, an intruder can know s which should be

secret between principals A and B, if he knows the

names of the principals and his own keys. We can

find the attack trace by checking the recorded clause

and substitution in reverse direction with that they are

applied in the unification. Each clause associates a set

of attack steps, the intruder obtains information by

these steps, if he need some unknown information, a

new session should be established. Each session has

an identifier. The attack scenario is shown in table 1.
Table 1. A attack scenario of Denning-Sacco key protocol

Rule Substitution Attack scenario

Intr(Pk (x11)) →

Intr(PE (SG(k[Pk

(x11)], Sk(A)), Pk

(x11)))

I / x11

1.A → I: A, I and I → S: A, I

2.S → I: Pk (A), Pk (I) and I → A: Pk

(A), Pk (I)

3.A → I: Pk (A), Pk (I), PE (SG(k[Pk

(I)], Sk (A)), Pk (I))

Intr(PE(x10, Pk (I))) ∧

Intr(Sk(I)) → Intr(x10)

SG(k[Pk (I)],

Sk (A)) /x10

Decrypt PE (SG(k[Pk(I)], Sk (A)),

PK), gain SG(k[Pk(I)] , Sk (A))

Intr(Host(x9)) B/x9 1’.A → I: A, B and I → S: A, B

Intr(Pk (B)) B/x8 2’.S → I: Pk (A), Pk (B) and I → A:

Pk (A), Pk (B)

Intr(x7) ∧ Intr(Pk(y2))

→ Intr(PE(x7, Pk

(y2)))

SG(k[Pk(I)],

Sk (A)) /x7

B/y2

Encrypt SG(k[Pk(I)] , Sk (A)) with Pk

(B)

Gain PE (SG(k[Pk(I)], Sk (A)), Pk

(B))

Intr (PE (SG(k, sk(A)),

Pk (B))) → Intr(E(s,k))

k=k[Pk(I)] 3’.A → I: Pk (A), Pk (B),PE(SG(k[Pk

(B)], Sk (A)), Pk (B))

Replace PE(SG(k[Pk (B)], Sk (A)), Pk

(B)) with PE (SG(k[Pk(I)], Sk(A)), Pk

(B))

I → B: Pk (A), Pk (B), PE

(SG(k[Pk(I)],Sk(A)), Pk (B))

B → I: Intr(E(s, k[Pk(I)]))

I → A: Intr(E(s, k[Pk(I)]))

Intr(SG(x2, Sk(y1))) ∧

Intr(Pk (y1)) →

Intr(x2)

A/y1, k=

k[Pk(I)]/x2

Check sign of SG(k[Pk(I)] , Sk(A)),

gain k[Pk(I)]

Intr(E(x1, k)) ∧Intr(k)

→ Intr(x1)

s/x1,

k=k[Pk(I)]

Decrypt E(s, k[Pk(I)]), gain s

In our discussion, we have ignored the timestamp

in the message PE(SG((k,TA), skA), pkB) of step 3,

so this attacker only succeeds in the condition of

timestamp is fresh.

5 Experimental results
Based on our first order logic theory for the crypto-

graphic protocols, we implement a prototype of pro-

tocol verifier in Visual C++, and perform tests on a

Pentium Ⅳ 1.86GHz, 512MB RAM, under Windows

XP/2000/2003. By 22 protocols’ verification, our

method is proved to be efficient. These protocols are

NSPK, NSSK, Otway-Rees, Wide Mouthed Frog,

Yahalom, Denning-Sacco, needham, Andrew secure

RPC, Carlsen’s Secret Key Initiator and ISO four-

Path Authentication protocol and their transmutations,

The minimum time is 110ms(for Denning-Sacco pro-

tocol), maximum time is 1547ms(for NSSK protocol),

most protocol can be verified in 1s. The number of

rules approximates the Blanchet’s. However, the

visualizing of the first order proof search is the main

superiority over other verifier.

6 Conclusion
Using first order logic to verify cryptographic

protocols is an efficient and practical approach. We

choose to study protocol representation and

reasoning using first order logic because it is by far

the most studied and best understood scheme in

artificial intelligence. Based on Delov-Yao model,

we have constructed a general framework for

formalizing the protocol and abilities of the intruder

in Horn clauses. Using deductive reasoning method,

we have realized the secrecy verification of

cryptographic protocols, and presented a method of

constituting attack scenario. Our future work will

focus on study of the optimization of the solving

algorithm, the goal is to analyze complicated

protocols and verify more security properties of

cryptographic protocols in a uniform mechanism.

References:

[1] M. Burrows, M. Abadi, and R. Needham. A logic

of authentication. Proceedings of the Royal

Society, Series A, 1989, 426(1871),pp.233–271.

Also appeared as SRC Research Report 39 and, in

a shortened form, in ACM Transactions on

Computer Systems 8, 1 (February 1990),

pp.18-36.

[2] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell,

and A. Scedrov. A meta-notation for protocol

analysis. In P. Syverson, editor, 12-th IEEE

Computer Security Foundations Workshop. IEEE

Computer Society Press, 1999.

[3] Weidenbach, C. 1999. Towards an automatic

analysis of security protocols in first-order logic.

In 16th International Conference on Automated

Deduction (CADE-16), H. Ganzinger, Ed.

Lecture Notes in Artificial Intelligence, vol. 1632.

Springer-Verlag, Berlin, Germany, pp.314-328.

[4] Durgin, N., Mitchell, J., and Pavlovic, D. 2001. A

compositional logic for protocol correctness. In

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 287

14th IEEE Computer Security Foundations

Workshop (CSFW-14). IEEE Computer Society,

Los Alamitos, CA, pp.241–255.

[5] Debbabi, M., Mejri, M., Tawbi, N., and Yahmadi,

I. 1997. A new algorithm for the automatic

verification of authentication protocols: From

specifications to flaws and attack scenarios. In

Proceedings of the DIMACS Workshop on Design

and Formal Verification of Security Protocols.

Rutgers University, New Jersey.

[6] M.Bozzano, G.Delzanno. Automated Protocol

Verification in Linear Logic. PPDP 2002.38-49.

[7] Steve Schneider. Security Properties and CSP. In

Proceedings of the 1996 IEEE Symposium on

Security and Privacy. IEEE Computer Society

Press, May 1996, pp. 174-187.

[8] Abadi, M. and Fournet, C. 2001. Mobile values,

new names, and secure communication. In

Proceedings of the 28th Annual ACM Symposium

on Principles of Programming Languages

(POPL’01). ACM Press, New-York, NY,

pp.104–115.

[9] Abadi, M. and Gordon, A. D. 1999. A calculus

for cryptographic protocols: The spi calculus.

Information and Computation 148, 1 (Jan.), 1–70.

An extended version appeared as

DigitalEquipment Corporation Systems Research

Center report No. 149, January 1998.

[10] Selinger, P. 2001. Models for an

adversary-centric protocol logic. In Proceedings

of the 1st Workshop on Logical Aspects of

Cryptographic Protocol Verification (Paris,

France), J. Goubault-Larrecq, Ed. Electronic

Notes in Theoretical Computer Science, vol.

55(1). Elsevier, Amsterdam, The Netherlands,

pp.73–88.

[11] M.Bellare and P.Rogaway. Provably secure

session key distribution—the three party case. In

Proceedings of the 27th ACM Symposium on the

Theory of computing,1995.

[12] Blanchet, B. 2001. An efficient cryptographic

protocol verifier based on Prolog rules. In 14th

IEEE Computer Security Foundations Workshop

(CSFW-14). IEEE Computer Society, Los

Alamitos, CA, pp.82–96.

[13] D.Monniaux. Abstracting Cryptographic

Protocols with Tree Automata. In Static Analysis

Symposium(SAS’99),volume 1694 of Lecture

Notes on Computer Science. Springer Verlag,

Sept.1999,pp.149-163.

[14] Mitchell, J.C. Finite-state analysis of security

protocols, in A.J.Hu & M.Y.Vardi,eds,’Computer

Aided Verification(CAV-98):10th International

Conference’,Vol.1427 of LNCS,

Springer,pp.71-76.

[15] Lincoln, P., Mitchell, J., Mitchell, M., and

Scedrov, A. 1998. A probabilistic poly-time

framework for protocol analysis. In Proceedings

of the Fifth ACM Conference on Computer and

Communications Security. ACM Press,

New-York, NY, pp.112–121.

[16]W.Marrero,E.Clarke, and S.Jha. Model checking

for security protocols.Technical Report

CMU-CS-97-139,School of Computer Science,

Carnegie Mellon University, May 1997.

[17]J.C.Mitchell, M.Mitchell, and U.Stern.

Automated Analysis of Cryptographic Protocols

Using Murϕ. In Proceedings of the 1997 IEEE

Symposium on Security and

Privacy,1997,pp.141-151.

[18] Paulson, L. C. 1998. The inductive approach to

verifying cryptographic protocols. Journal of

Computer Security 6, 1–2, pp.85–128.

[19] J.K.Millen,S.C.Clark, and S.B.Freedman.The

Interrogator: Protocol Security Analysis. IEEE

Transactions on Software Engineering, SE-13(2),

Feb.1987, pp.274-288.

[20] E.Cohen.TAPS: A First-Order Verifier for

Cryptographic Protocols. CSFW

2000,pp.144-158.

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 288

