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Abstract: - In this paper, a new first-order logical framework and method of formalizing and verifying 

cryptographic protocols is presented. From the point of view of an intruder, the protocol and abilities of the 

intruder are modeled in Horn clauses. Based on deductive reasoning method, secrecy of cryptographic protocols 

is verified automatically, and if the secrecy is violated, attack scenarios can be presented through back-tracing.  

The method has been implemented in an automatic verifier, many examples of protocols have been analyzed in 

less then 1s. 
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1   Introduction 
A cryptographic protocol is a precisely defined 

sequence of communication and computation steps 

using cryptographic mechanism, its aim is ensuring 

the security of the transaction and communication in 

network or distributed systems. The rapid extending 

of the internet causes a growing need for 

cryptographic protocols, but it is well known that the 

design of such protocols is difficult and error-prone. 

Therefore, it is necessary to study formal analysis 

methods and automatic verification tools for the 

cryptographic protocols. Researchers have adopted 

many theories and techniques to build automatic 

verification tools. The theories are mainly derived 

from logic[1,3,6], algebra[7,8,9], complexity 

theory[11,15] and automata theory[13], the popular 

techniques are model checking[14,16,17] and 

theorem proving[18,20, 3]. Verifiers based on model 

checking suffer from the problem of the state space 

explosion, while verifiers based on theorem proving 

usually need manual intervention. 

In this paper, we present a new formal approach 

for automatic verification of cryptographic protocols. 

This approach is fully automatic and terminable. The 

main contributions of the paper are: a general 

framework of formalizing cryptographic protocol 

and abilities of the intruder, a practical solving 

algorithm based on automatic reasoning, and a 

simple method to find the attack scenarios. 

 

 

2   Related Work  
The logic-based approach has been proved to be 

particularly well-suited for automation. Its early 

application in analysis of cryptographic protocol is 

Millen’s Interrogator[19]. Using Prolog, Interrogator 

searches for instantiations of a goal signifying the 

intruder’s knowledge of specified data which would 

lead to an insecure state. Interrogator can find 

protocol flaws successfully, but the search time 

varies significantly depending on the precise format 

of the protocol specification and the amount of 

information about the insecure state, and the search 

heuristics may prevent some flaws from being 

noticed. 

Combining the benefits of the finite state analysis 

and the inductive method, C.Weidenbach develops 

the automated theorem prover SPASS[3], in which 

the protocols are formalized in monadic first-order 

Horn logic. Based on sort resolution, he also proves 

that parts of the used first-order fragments can be 

decided. By taking Neumann-Stubblebine protocol 

as an executing instantiation, he shows that SPASS 

can automatically prove security properties of the 

protocol and detect potential errors of an 

implementation. 

Blanchet’s verifier[12] is another efficient 

automatic tool. It is based on logic programming and 

abstractions,  the protocol and attacker’s abilities are 

specified by means of Prolog rules, cryptographic 

primitives are represented by constructors and 

destructors, fresh values are modeled as functions of 

previously received messages of the principal. An 

abstraction is made by forgetting the number of times 

a message appears and remembering the fact that it 

has appeared. The state of principals is not explicitly 

maintained, principals’ rules are not ordered into 

runs, the same rule can be applied more than once 

and in different order with respect to the original 

protocol. These approximations may lead to giving 
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“false attacks” despite they are rather rare. By a 

two-phase algorithm based on resolution and 

depth-first backward search, the verifier can prove 

the secrecy of   cryptographic protocols.  

 

 

3  Modeling cryptographic protocols 
Modeling the cryptographic protocol is the first step 

of protocol verification. We use first-order theory to 

formalize cryptographic protocols and intruders. The 

final form of our method is similar to Blanchet’s, but 

the modeling process is more regular and impersonal. 

We assume that messages transmitted by each 

principal can be received by the intruder, and 

messages received by each principal can be known 

by the intruder. We test the security of cryptographic 

protocols at the standpoint of the intruder. The 

intruder holds some initial knowledge, he can get 

information by observing the communications 

between principals,  and gain knowledge by comput- 

ing on the basis of known information. So, the 

protocol representation includes three parts: initial 

knowledge of the intruder, message exchange of the 

protocol itself, and computation abilities of the 

intruder. 

 

 

3.1 Syntax of protocol representation 
Our cryptographic protocol theory is expressed by 

terms, predicate and  implication rules.  

The terms represent messages that are exchanged 

between participants of the protocol. Constant 

symbols, variables, and function symbols are used to 

build terms. By convention, we use upper case to 

denote constants, lower case to denote variables, 

function and predicate begin with an upper letter. 

In order to deduct efficiently, we introduce term 

types to specify the structure of messages and 

perform type check before computation. Term  types  

have the following structure. 

τ, τ’::=msg  message 
|princ  principal 

|nonce  nonce 

| ident  identifier 
| key        key 

|compmsg compound message 

key::=shK  symmetric session key 

|pubK  public key 

|privK    private key 

|longtK  long-term key 
compmsg ::=H[τ] hash value 

|SC[τ, τ’ ] symmetric cipher 

|AC[τ, τ’ ] asymmetric message cipher 

|SN[τ, τ’ ]      signature 

|T[τ, τ’ ]  tuple 

A term has type τ can be represented by t: τ. 
Constant symbol can be A, B, S, I, … which 

represent principals and have type msg, or  terms 

which represent  keys, nonces, identifiers etc. A 

variable can represent any term. The typical function 

symbols appear as below:  

(m1,…,mn): tuple of messages, where mi(i=1,…n) 

has type msg. 

Host(x): identity of x: princ. 

Pk(x): public key of x: princ. 

Sk(x): private key of x: princ. 

E(m,k): encrypt m: msg with k: shK 

PE(m,pk): encrypt m: msg with pk: pubK 

SG(m, sk): sign m: msg with sk: privK 

H(m): hash of m: msg 

Hk(m, k): keyed hash of m under key k 

X(m, n): bitwise exclusive-or of m and n 

Inc(m): addition of  m by 1 

The function value have certain types too. 

The predicate has only one form of Intr(M) which 

means   “intruder knows M”. The implication rules 

are used to formalize the protocol steps and intruder’s 

computation abilities. 

 

 

3.2  Protocol specification 
A protocol is composed of some communication 

steps executed by protocol principals. Every 

principal plays a different role in the protocol. 

Typically, the roles can be protocol initiator and 

responder, there often exits a trusted third party in the 

protocol too. We use axioms to depict the 

communicating actions of each role. The intruder can 

know all communications between the protocol roles. 

When a role receives a message, the intruder also 

know it, on the premise of receiving messages, the 

role would generate a new message and transmit it, 

the new message can be known by intruder too.  The 

predicate corresponding to role’s message receiving 

can be affiliated to the  axiom by logical connective ∧, 

and the predicate corresponding to role’s message 

transmitting can be the conclusion of the implication 

relation. The universal quantification ∀ is used to 

eliminate the limitation for protocol runs, and 

existential quantification ∃ is used to denote 

generating of key or nonce, and through renaming 

and consistency check, ensure the refreshness and 

boundlessness of the new value. For example, for the 

Denning-Sacco key distribution protocol  which can 

be expressed as follow: 

1．A→S: A, B 

2．S→A: Pk(A), Pk(B) 

3． A→B: Pk(A), Pk(B), PE(SG(k, Sk(A)), Pk(B)) 
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4．B→A: E(s, k) 

where A and B are two principals whose goal is to 

establish a shared private key k. Pk (A) and Pk (B) are 

public keys of A and B respectively, they are 

contained in their digital certificates distributed by 

the trusted server S. Step 4 is not really part of the 

protocol, we include it for the purpose of secrecy 

verification.  

The input of protocol specification in our first 

order logic can be shown as below: 

Φi : ∀A, B (Intr(Host(A), Host(B)) ∧ 

Intr(Pk(A), Pk(B)) →∃ k 

(Intr(pk(A), pk(B), PE (SG(k, 

Sk(A)), Pk(B))∧ Intr(E(s,k)))) 

(1) 

Φr : ∀A, B ∀k (Intr(Pk(A), Pk(B), PE (SG(k, 

Sk(A)), Pk(B))) → Intr(E(s,k))) 
(2) 

Φs : ∀A, B (Intr(Host(A), Host(B)) → 

Intr(Pk(A), Pk(B))) 
(3) 

The axiom Φi corresponds to the initiator role, Φr 

corresponds to the responder role, and Φs 

corresponds to the trusted server. 

For brevity, we transform the axioms into Horn 

clauses and remove the redundant facts, gain a set of 

clauses: 

∀A, B (Intr(Host (A), Host (B))) (4) 

∀A, B ∃ k (Intr(Pk (A), Pk (B)) → 

 Intr(PE (SG(k, Sk (A)), Pk (B)))) 
(5) 

∀A, B ∃ k (Intr(Pk (A), Pk (B)) → 

 Intr(E(s,k))) 
(6) 

∀A, B ∀k (Intr(Pk (A), Pk (B), PE (SG(k, Sk 

(A)), Pk (B))) → Intr(E(s,k))) 
(7) 

∀A, B (Intr(Host (A), Host (B)) → Intr(Pk 

(A), Pk (B))) 
(8) 

Then, we use a new name to replace the 

existential quantifier by skolemization, for instance, 

k[x] stands for generating a new name k depending 

on x. 

The initiator roles can not restrict their sent 

messages to be accepted only by someone, and 

responder roles can not know where their received 

messages really come from. Assuming A and B are 

legal principals and they are willing to talk to any 

principals, we can transform (4)—(8) by removing 

the existential quantifiers and universal quantifiers, 

making resolution and eliminating the rules which 

are implicated by other rules[12], finally we gain 

formulae: 

Intr (Host (x)) (9) 

Intr (Pk (x)) → Intr (PE (SG(k[Pk (x)], 

Sk (A)), Pk (x))) 
(10) 

Intr (Pk (x)) → Intr (E(s, k[Pk (x)])) (10) 

Intr (PE (SG(k, Sk (A)), Pk (B))) →  

Intr (E(s,k)) 
(12) 

Intr (Host (x)) → Intr (Pk (x)) (11) 

In order to construct the attack trace later, each 

Horn clause above is associated with a message 

number according to its conclusion, and the message 

number can be passed to the new rule inferred by 

resolution. We can notice that the rule(10) and (12) 

are just the same rules representing the protocol in 

[12]. From the instantiation of  (9) and (13), we can 

obtain the intruder’s initial knowledge in [12]. 

 

 

3.3  The intruder abilities 
Following Dolev-Yao Model, the protocol is 

executed in the presence of an intruder that can 

intercept all messages, generate new messages from 

the messages he has received, and send messages 

whenever he wants to do so. An intruder can gain 

information either by passive means, such as 

eavesdropping and taking advantage of public 

information, or by active means such as encrypting,  

decrypting, reconstructing and replaying messages, 

impersonating other principals. So the computation 

abilities of the intruder can be represented as below: 

Compose:  Intr (n1) ∧ Intr (n2) ∧…∧ Intr 

(nk)→ Intr (n1, n2, …nk) 

for every k ≥ 0 

(14) 

Decompose:   Intr (n1, n2, …nk) → Intr 

(ni) for every k ≥ i ≥ 0 
(15) 

Encrypt:   Intr (k) ∧ Intr (x) → Intr (E(x, 

k)), for k: key, x:msg 
(16) 

Decrypt:   Intr (E(x, k)) ∧ Intr (k) → Intr 

(x) , for k: key, x:msg 
(17) 

Public Encrypt:   Intr (x) ∧ Intr (Pk (y)) 

→ Intr (PE(x, Pk (y))), 

for x:msg, y:princ 

(18) 

Public Decrypt:   Intr (PE(x, Pk(y))) ∧ 

Intr (Sk(y)) → Intr (x) , 

for x:msg, y:princ 

(19) 

Sign:  Intr (x) ∧ Intr (Sk(y)) → Intr 

(SG(x, Sk(y))) , for x:msg, y:princ 
(20) 

Check Sign:   Intr (SG(x, Sk(y))) ∧ Intr 

(Pk(y)) → Intr (x) , for 

x:msg, y:princ 

(21) 

Hash:   Intr (x) → Intr (H(x)) (22) 

Key Hash:  Intr (x) ∧ Intr (k)  

→ Intr (H(x, k)) 
(23) 

Generate key:   Intr (Sk (x)) → Intr (Pk 

(x)) , for x, y:princ 
(24) 

Exclusive-or:   Intr (x) ∧ Intr (y) → Intr 

(X(x, y)) 
(25) 

The intruder’s abilities also contain his initial 

knowledge, such as: 

Secret Key:   Intr(Sk(I)) (12) 

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007      285



Public Key:   Intr(Pk(I)) (13) 

Here, Sk(I) and Pk(I) are the secret key and 

public key of the intruder. (26) and (27) denote that 

the intruder knows his own secret key and public key. 

In addition, the intruder can gain some initial 

information about the protocol and principals, such 

as public keys of others. 

 

 

4 Verifying the secrecy of 

cryptographic protocol 
We adopt deductive reasoning method to verify the 

secrecy property of cryptographic protocols. If the 

intruder can not obtain any information about 

message M through interacting with the protocol, we 

say that the protocol keeps the secrecy of M.  

 

 

4.1 Verifying algorithm 
we consider the secrecy property as a goal, and check 

whether it can be inferred from the known rules. The 

known rules form a rule base B containing the Horn 

clauses of protocol description and abilities of the 

intruder. If the goal can be inferred from the base, the 

sequence of rules applied will lead to the description 

of an attack scenario. 
Definition 1 (Rule activation)  Let F be a fact, 

A rule is activated if its conclusion is unifiable with F. 

Definition 2 (Provability)  Let F be a closed 

fact, and B be a set of Horn clauses. F is provable 

from B, if and only if there exists a finite proof tree 

defined as follow: 

1. Its root node is F. 

2. Its parent nodes are all conclusions of activated 

Horn clause. A parent node and his son nodes denote 

a rule, parent node is the conclusion and son nodes 

are premises. 

3. Its leaf nodes are all closed facts which are 

contained in B or unifiable with facts in B. 

Theorem  If Intr(M) is not provable from the 

initial facts and rules of our notation, then M is secret. 

Prove  The functions of cryptographic primitives 

in our notation correspond to the constructor in [12], 

and rules of intruder’s abilities implicate the function 

of destructor. Rules representing the protocol are 

logical equivalence with the model of Selinger[10], 

we make a transform on the assumption that principal 

A is the legal initiator and B is the legal responder, 

this make A cannot play the role of B and vice-versa. 

This is one of the remarks of Branchet[12] too. By 

giving explicit names to subformulas, Selinger’ 

model can be translated to a linear logic model[2], 

from a linear logic model which is simplified with 

respect to the model[2], Branchet’s logic 

programming rules can be inferred, so our notation 

embodies Branchet’s prolog rules. Thus we can use 

the idea of secrecy of Branchet’s[12], if Intr(M) is not 

provable from the logic programming rules of our 

notation, it is not derivable from the Branchet’s 

notation, according to theorem 4 in [12], M is secret. 

We use the converse deductive reasoning method 

to prove the secrecy, the prove tree is established by 

using Generalized Modus Ponens rule backwards. 

The simplified deductive algorithm can be described 

as below: 

Derive (B,F) returns a series of applied rules and a set 

of substitutions 

Trace_rule = {} 

Derive_list(B, [F],{}) 

End 

Derive_list(B, qlist, curr_subst, Trace_rule) 

If qlist is empty then return curr_subst, 

Trace_rule 

Sub={} 

Sort(qlist) 

Q←head(qlist) 

 for each atom sentence Pi’ in B such that σi ← 

Unify(Pi’, Q) succeeds and σi is in consistent with 

curr_subst do 

    Trace_rule = Trace_rule ∪ Pi’ 

Sub=sub∪ append(curr_subst, σi) 

end 

for each noncycle rule Ri =P1∧ P2∧…Pn→Qi in B 

such that σi ← Unify(Qi, Q) succeeds and σi is in 

consistent with curr_subst do 

 Trace_rule = Trace_rule ∪ Ri’ 

           sub= sub ∪Derive_list(B, (σiP1, 

σiP2,…σiPn), append(curr_subst, σi) , 

Trace_rule) 

 end 

return the union of Derive_list(B, 

tail(qlist), curr_subst, Trace_rule) 

for each substitution ∈sub 

end 

A cycle rule is the rule which is activated just 

after their reverse computing rule has been activated. 

The Compose and Decompose, Encrypt and Decrypt, 

Public Encrypt and Public Decrypt, Sign and Check 

Sign rules are all mutual reverse. If  the two reverse 

rules are activated in succession, it will cause 

non-termination. So these cases should be avoided. 

Otherwise, the search space is finite. 

For the Denning-Sacco key distribution protocol 

described above, we can find a proof  tree shown in 

fig.1.  
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Fig. 1. A proof tree for secrecy of Denning-Sacco protocol 
 

 

4.2 Finding attacks 
From the proof tree for the secrecy of Denning-Sacco 

protocol, an intruder can know s which should be 

secret between principals A and B, if he knows the 

names of the principals and his own keys. We can 

find the attack trace by checking the recorded clause 

and substitution in reverse direction with that they are 

applied in the unification. Each clause associates a set 

of attack steps, the intruder obtains information by 

these steps, if he need some unknown information, a 

new session should be established. Each session has 

an identifier. The attack scenario is shown in table 1.  
Table 1. A attack scenario of Denning-Sacco key  protocol 

Rule Substitution Attack scenario 

Intr(Pk (x11)) → 

Intr(PE (SG(k[Pk 

(x11)], Sk(A)), Pk 

(x11))) 

I / x11 

 
1.A → I: A, I and I → S: A, I 

2.S → I: Pk (A), Pk (I) and I → A: Pk 

(A), Pk (I) 

3.A → I: Pk (A), Pk (I), PE (SG(k[Pk 

(I)], Sk (A)), Pk (I)) 

Intr(PE(x10, Pk (I))) ∧ 

Intr(Sk(I)) → Intr(x10) 

SG(k[Pk (I)], 

Sk (A)) /x10  

Decrypt PE (SG(k[Pk(I)], Sk (A)), 

PK), gain SG(k[Pk(I)] , Sk (A)) 

Intr(Host(x9)) B/x9 1’.A → I: A, B and I → S: A, B 

Intr(Pk (B)) B/x8 2’.S → I: Pk (A), Pk (B) and I → A: 

Pk (A), Pk (B) 

Intr(x7) ∧ Intr(Pk(y2)) 

→ Intr(PE(x7, Pk 

(y2))) 

SG(k[Pk(I)], 

Sk (A)) /x7 

B/y2 

Encrypt SG(k[Pk(I)] , Sk (A)) with Pk 

(B) 

Gain PE (SG(k[Pk(I)], Sk (A)), Pk 

(B)) 

Intr (PE (SG(k, sk(A)), 

Pk (B))) → Intr(E(s,k)) 

k=k[Pk(I)] 3’.A → I: Pk (A), Pk (B),PE(SG(k[Pk 

(B)], Sk (A)), Pk (B)) 

Replace PE(SG(k[Pk (B)], Sk (A)), Pk 

(B)) with PE (SG(k[Pk(I)], Sk(A)), Pk 

(B)) 

I → B: Pk (A), Pk (B), PE 

(SG(k[Pk(I)],Sk(A)), Pk (B)) 

B → I: Intr(E(s, k[Pk(I)])) 

I → A: Intr(E(s, k[Pk(I)])) 

Intr(SG(x2, Sk(y1))) ∧ 

Intr(Pk (y1)) → 

Intr(x2) 

A/y1, k= 

k[Pk(I)]/x2 

Check sign of SG(k[Pk(I)] , Sk(A)), 

gain k[Pk(I)] 

Intr(E(x1, k)) ∧Intr(k) 

→ Intr(x1) 

s/x1, 

k=k[Pk(I)] 

Decrypt E(s, k[Pk(I)]), gain s 

In our discussion, we have ignored the timestamp 

in the message PE(SG((k,TA), skA), pkB) of step 3, 

so this attacker only succeeds in the condition of 

timestamp is fresh. 

 

 

5   Experimental results 
Based on our first order logic theory for the crypto- 

graphic protocols, we implement a prototype of pro- 

tocol verifier in Visual C++, and perform tests on a 

Pentium Ⅳ 1.86GHz, 512MB RAM, under Windows 

XP/2000/2003. By 22 protocols’ verification, our 

method is proved to be efficient. These protocols are 

NSPK, NSSK, Otway-Rees, Wide Mouthed Frog, 

Yahalom, Denning-Sacco, needham, Andrew secure 

RPC, Carlsen’s Secret Key Initiator and ISO four- 

Path Authentication protocol and their transmutations, 

The minimum time is 110ms(for Denning-Sacco pro- 

tocol), maximum time is 1547ms(for NSSK protocol), 

most protocol can be verified in 1s. The number  of 

rules approximates the Blanchet’s. However, the 

visualizing of the first order  proof search is the main 

superiority over other verifier. 

 

 

6   Conclusion 
Using first order logic to verify cryptographic 

protocols is an efficient and practical approach. We 

choose to study protocol representation and 

reasoning using first order logic because it is by far 

the most studied and best understood scheme in 

artificial intelligence. Based on Delov-Yao model, 

we have constructed a general framework for 

formalizing the protocol and abilities of the intruder 

in Horn clauses. Using deductive reasoning method, 

we have realized the secrecy verification of 

cryptographic protocols, and presented a method of 

constituting attack scenario. Our future work will 

focus on study of the optimization of the solving 

algorithm, the goal is to analyze complicated 

protocols and verify more security properties of 

cryptographic protocols in a uniform mechanism. 
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