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Abstract: - A method is described for obtaining the rate constant of the photodegradation 
process of fluorophores illuminated by focused laser beam. The explicit kinetic equations 
are averaged over the illuminated volume to describe the behavior of fluorescence for 
illumination modulated at low frequencies (1 Hz to 100 Hz). Solution of the kinetic 
equation for a complex modulation leads to an in-phase and quadrature components. The 
ratio of quadrature to in-phase components yields information on the photodegradation 
rate. Modeling is undertaken to explore the accuracy of the measurement of rate constants 
using the power modulation and synchronous detection technique. 
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1 Introduction 
There are many instances of a laser beam 
interacting with biological system[1]. Examples 
range from laser surgery to simple probing of 
labeled antibodies. In most cases the interpretation 
of the measurements is rather difficult. This paper 
describes a technique which may provide a 
quantitative method for studying laser induces 
effects. The work focuses on the photodegradation 
of fluorescent labels in solution illuminated by a 
focused probe beam.  Fluorescent labels are widely 
used to probe cell structure and cellular events, and 
photodegradation is often a limiting factor. There 
are many difficulties in interpreting the reduction of 
fluorescence signal due to photodegradation. 
Heating, convection, and scattering are some of the 
confounding factors. We describe a method to 
obtain quantitative information about the 
photodegradation rate constant of fluorophores. The 
methodology could be applied to other cases such as 
photodynamic therapy[2].  

 
2 Problem Formulation 
Figure 1 shows a schematic of the physical 

 

situation under consideration in this work.  
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A more detailed description of the apparatus is 
given in reference [3]. A laser beam, incident along 
the z axis, is focused to a waist of about 20 µm. A 
solution of fluorophores flows along the x axis 
(vertical direction in Fig. 1) and passes through the 
focused laser beam. A detector located along the y 
axis (out of the plane of Fig. 1) detects fluorescence 
from the illuminated fluorophores within the 
acceptance aperture which is no larger than twice 
the Rayleigh range (the distance over which the 
beam diameter does not exceed 1.414 of the value 
of the waist). The detector sums all photons coming 
from the fluorophores in the observation region. 
The kinetic equation that describes the temporal 
evolution of the fluorophore concentration 
integrated over the entire observation region, 

( )N t , has been derived [4]. The resulting 
n is reproduced below. 

 
equatio

00 0

0 0

( ( )) (1 ( ( )))( ) ( ) ( ( ) ) 
1 ( ( )) 1.274 (1 ( ( )))

P t b P td vN t N t N t N
dt b P t w b P t

ηα α
α α

′− +Δ + +Δ
= − ⋅ −
+ +Δ ⋅ + +Δ

             (1) 

here 
 
w 1( ) cos( )t P tωΔ = . Here P1 is the amplitude 
of modulated laser power, P0 is the constant laser 
power, and 2 fω π= , the frequency of modulation. 
The other ter . 1 are v, the velocity of flow, 
w, the width of the laser beam, b, a ratio of optical 
rates involved in the molecular transitions, the 
unperturbed fluorophore concentration N

ms in Eq

0, and 
dk bη =  where kd is the photodegradation rate.  The 

es α and α’ depend on the beam geometry 
which is assumed to be a Gaussian function (see 
Eq. 1c) with the area normalized to 1. Explicitly 
 

quantiti

         .
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It was shown in a previous paper [4] that to a 
very good approximation the values of α and α’ 
are time independent and that they can be 
calculated using the time independent, steady 
state solution of the complete set of kinetic 

equations.  Consequently we place N(x,y), in Eq. 
1b. The value of α′  is calculated using Eq 1b 
with N(x,y) replaced by the 
derivative ( , )dN x y dx  The spatial properties of 
the laser beam are described by the function [5] 
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The fluorescence signal originates from the 
 

radiative relaxation of molecules excited by the 
laser beam. The fluorescence signal from any 
location within the laser beam depends on the 
laser power and the concentration of 
fluorophores at that location. The explicit form 
of the fluorescence signal integrated over the 
entire observation volume  is given by Eq 2[4].  
 

2( ) ( ) ( ) ( ( )) ( )radF t Bk b P t N t b P t N tα⎡ ⎤= −⎣ ⎦   (2) 
 

here B is an instrument constant, is the 
ite

w radk
radiative decay rate of the molecular exc d state 
and 0 1 0( ) cos( ) ( )P t P P t P tω= + ≡ + Δ .The 
fluor d by 
solving a single ordinary differential equation for 

escent signal can therefore be obtaine

( )N t , Eq. 1, and then using Eq. 2 to calculate 
ulting fluorescence signal. Together these 

equations represent an experimentally accessible 
mathematical model of the fluorescent signal due 
to excitation by a focused laser beam. The model 
can be used to analyze measurements. The 
problem is that the two equations contain many 
parameters, , , , , ,b v and w

the res

η α α′ , and it is not clear 
how to extra e relevant physical 
quantity, k

ct the value of th

 Problem Solution 
ll laser power. We make 

d.   
 
3
Consider the case of sma
the approximation, ( ) 1, ( ) 1b P t b P tα α′ , and 
write  Eq. 1 as 
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here we have written the modulated laser 
 
w
power as a complex quantity 0 1( ) j tP t P Pe ω= + . 
By writing the time-dependent p  
as 1

i tPe
ower modulation

ω  (P1   real) , and assuming a complex 
solu  we are solving the complex kinetic 
equation simultaneously for two power 
modulations: P

tion,

1cos(ωt) and P1sin(ωt) . In the 
case where the response follows the sinusoidal 
modulation without any lag, the solution will be 
given by Re j tω  where R is a real number. If the 
response of the system lags the modulation then 
there will be a measurable phase lag between the 
sinusoidal modulation and the response. In this 
case the solution will be given by Re j tω  where R 
is a complex number. The compl umber R 
can be written as 

ex n
jR e θ  where R  is the 

magnitude and θ  is th se differen between 
the driving modulation and the complex 
solutions.  The phase is calculated using  

e pha ce 

1 Im( )tan ( )
Re( )

R
R

θ −=  which, for small phases, 

reduces to Im( ) Re( )R Rθ = (< 4% error for θ 

 
                    

<17°). Since the phase lag is given by the ratio of 
the imaginary and real parts of the solution, the 
calculation of the phase is very simple.  The 
mathematical economy of this method is the 
motivation for using a complex modulation. 
Since the modulation contains a constant 
component, P0, the solution is assumed to have a 
constant component,  0N , and a time-dependent 
response, 1N  . The explicit solution is given by 
Eq. 4. 

   0 1( ) j tN t N N e ω= +              (4) 

The procedure for finding the solution is to insert 
 

Eq. 4 into Eq. 3 and set equal the parts on each 
side that have the same time variation. (Only the 
response with the same frequency will be found. 

Second harmonic response would require putting 
in an additional term in the assumed solution 
proportionate to 2j te ω ). The time independent 
part and the part that varies as j te ω  are given by 
Eq. 5 
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=
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The constant A is defined as 
 

1.274A v w= . 
According to Eq. 2, for small power levels the 
integrated fluorescence signal is proportionate 
to ( ) ( )P t N t . Inserting the expression for power 

of the las P(t), and the solution er, ( )N t  given 
by Eq 5 yields the ratio of the imaginary and real 
part of the fluorescence signal given by Eq. 6. 
 

              0
2

0( )
Pimaginary

real A A P
ηαω
ηα ω

=
+ +

    (6) 

 
q. 6 suggests a possible interpretation of the E

measurements. Measure the ratio of the 
imaginary and real parts as a function of 
frequency for several power levels P0. At each 
power level, fit the frequency dependence to a 
function of the form 2

1 2( )a aω ω+  and obtain 
the value of the parame rding to Eq. 
6, the parameter value should depend linearly on 
power with the slope equal to dk b

ter a1 . Acco

ηα α= . From 
the slope it is possible to deter roduct 
of the decay rate, molecular rate constants, and a 
property of the laser beam. This is not very 
satisfactory because the result does not provide 
unique information about the photodegradation 
rate. 
 C

mine the p

onsider next the case of an arbitrary power 
level. Repeating the steps leading to Eq. 5 and 
using the complete Eq. 1 leads to the following 
solution. 
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Applying this solution to calculate the 
fluorescence signal, we obtain the ratio of the 
imaginary part and the real part given by Eq. 8 
 

0
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P
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            (8) 
 

At first glance this result does not look promising. 
However, the denominator is, to a good 
approximation, dominated by the term A2+ω2 and 
the ratio of α and α’ is approximately a constant for 
a given laser beam geometry. This ratio can be 
calculated by Eq. 1b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 2 
 

Figure 2 shows the ratio of α and α’ as a function 
of beam width for three values of the 
photodegradation rate, kd. In the first 
approximation, the quantities α and α’ are related 
to each other by a constant factor of about 1.40. 
For specific  beam width of 10 μm  the value of 

the ratio ranges from 1.37 to 1.44 depending on 
the value of the photodegradation rate constant. 
In absolute terms, a range of 200 % variation in 
the photodegradation rate constant results in a  
5 % variation in the ratio α α′ . Thus it is 
reasonable to set the value of the ratio to a 
constant in Eq. 8 and proceed to evaluate the 
photodegradation rate constant. This is 
demonstrated in the following. 
 Using Eq. 8 it is possible to calculate the 
expected response as shown in Fig. 3 for four 
values of the total laser power.  
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   Figure 3 
 
Suppose that the calculated curves in Fig. 3 are 
actual measurements. The ratio of the quadrature 
to the in-phase components of the measured 
response can be fitted to a function of 
modulation frequency of the form 

 

  1
2

2

aimaginary
real a

ω
ω

=
+

          (9) 

 
Measurements carried out at different values of 
power provide a dependence of the parameter a1 
on laser power.  Equation 8 suggests that the 
measured parameter a1 obtained from the 
frequency dependence of the response at a given 
power should depend quadraticaly on the power. 
Hence it should be possible to extract two 
parameters from the fit of the dependence of a1 

α α′
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on power. The explicit functional form is given 
by  

 

  0
1

0 0(1 )(1 1.44 )
cPa

dP d P
=

+ +
      (10) 

 
The two parameters are c=ηα , as in the case of 
low power, and the additional parameter d=bα . 
The ratio of these two parameters gives the 
photodegradation rate. What is the origin of this 
happy fact? The variation of a1   on laser power 
has two sources, first a variation due to the 
photodegradation process described by parameter 
c, and second variation due to the saturation of 
the excited state population described by 
parameter d. The reduction due to 
photodegradation involves the same molecular 
optical parameters as the reduction due to 
saturation. Therefore in the ratio of the two fit 
parameters, c/d, the optical parameters cancel out 
leaving only the photodegradation rate. The 
responses shown in Fig. 3 for kd=600 s-1 and 
different power levels, were fitted and the 
parameter a1 obtained as a function of laser 
power. The upper solid line in Fig. 4 shows the 
dependence of the parameter a1 on laser power 
for .  1600dk s−=

 
                             Figure 4 
 
 
 
 

he inset in Fig. 4 shows the deviation of the T
dependence from a straight line. Although the 
deviation is small (<5%) it is sufficient to obtain 
the two parameters c and d. The ratio gives a 
photodegradation constant of 592 s-1. The small 
difference from 600 s-1 is due to systematic 
errors inherent in the assumption that the ratio 
α α′  is a constant.  The present analysis 

sts that the systematic errors inherent in the 
mathematical description are relatively small.  In 
real measurements there would also be additional 
uncertainties due to the measurement process. 
The analysis suggests the need for beam stability 
to maintain a constant beam width. There is a 
need to limit the detector aperture to accept 
photons from beam regions over which the beam 
diameter is maintained to less than 1.414 of its 
waist.  
 

sugge

 Conclusion 
nce response due to modulation 

4
 The fluoresce
of a laser power can be measured using lock-in 
amplifier detectors. The ratio of the quadrature 
(imaginary) to the in-phase (real) components of 
the measured response can be fitted to a function 
of the modulation frequency given by 

2
1 2( )a aω ω+ . The fitting yields values of the 

1parameters a  and a2.  The measurement is 
repeated for several power levels resulting in a 
measured dependence of the parameter a1 on the 
power of the laser. The dependence of the 
parameter a1 on the power should be fitted to a 
function, 1 0 0 0((1 )(1 1.44 ))a cP dP d P= + + , where 
1.44 is a eometry 
corresponding to a beam width of 10 μm. The 
ratio of the two fitting parameters, c/d, gives the 
photodegradation rate k
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d. In principle the result 
does not depend on the rates of molecular 
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