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Abstract: The computation of orbits ofdynamical systemsis known to be highly unstable if the system exhibits
chaotic behavior. In this case, even for the very simplest systems, ordinary floating-point computations will even-
tually deliver results which are completely wrong quantitatively, when compared with the true trajectory on which
the computation began. Similarly, ordinary interval arithmetic (i. e. intervals of floating-point numbers) yield poor
enclosures after few iterations. In most cases the computation breaks down because of overflow. UsingintpakX ’s
multiple precision intervals, we can compute enclosures oforbits for a considerably longer time with high accuracy.
Statements concerning the sensitivity with respect to small changes in the seed value of the numerical computa-
tions are possible with mathematical rigor. We also show that computing an orbit using a rational arithmetic as
e.g. provided by the computer algebra system Maple is not possible due to computing time and computer memory
limitations.
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1 Introduction
Let us cite from [13]:

The logistic map is a polynomial map-
ping, often cited as an archetypal exam-
ple of how complex, chaotic behaviour can
arise from very simple non-linear dynam-
ical equations. The map was popularized
in a seminal 1976 paper by the biologist
Robert May. The logistic model was orig-
inally introduced as a demographic model
by Pierre Franois Verhulst. Later it was ap-
plied on surplus production of the popula-
tion biomass of species in the presence of
limiting factors such as food supply or dis-
ease, and so two causal effects:

• reproduction means the population
will increase at a rate proportional to
the current population

• starvation means the population will
decrease at a rate proportional to the
value obtained by taking the theoreti-
cal ”carrying capacity” of the environ-
ment less the current population.

Mathematically this can be written as

xn+1 = axn(1 − xn)

wherexn is a number between zero and one,
and represents the population at yearn, and
hencex0 represents the initial population (at
year 0). a is a positive number, and repre-
sents a combined rate for reproduction and
starvation.

Most values ofa beyond 3.57 up to 4.0 exhibit
chaotic behaviour. The system exhibits dynamics that
are very sensitive to the initial condition (here the
value ofa). The accurate numerical computation of
the iteratesxn for largern ∈ IN is a nontrivial task. In
the following we will first give an example showing
the difficulties in computingxn using Maple’s deci-
mal arithmetic(s) for different values of mantissa dig-
its k. We will also demonstrate that ordinary inter-
val computations will break down very soon due to
overestimations. Computations with rational numbers
(starting from rationalsx0 and a) are only possible
for small values ofn. The numerators and denom-
inators become very soon very large. The comput-
ing time is increasing rapidly and the amount of com-
puter memory needed is a limiting factor. To over-
come these problems we will use a multiple precision
interval arithmetic based on Maples multiple precision
decimal arithmetic. We will compare the naive inter-
val computation (linear approximation property) with
a so called centered form (quadratic approximation
property). The multiple precision interval arithmetic
has been implemented as part of a software pack-
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age calledintpakX providing different kinds of in-
terval algorithms (range enclosures, interval Newton
method, complex interval operations,. . .). The pack-
age is freely available as a Maple power tool. A link
to the newest version ofintpakX is given in Section
3.

2 Accurate numeical computation of
orbits of a chaotic dynamical sys-
tem

The computation of an orbit of a dynamic system is
known to be highly unstable if the system exhibits
chaotic behavior. In this case, even for the very sim-
plest systems, ordinary floating-point computations
will eventually deliver results which are completely
wrong quantitatively, when compared with the true
trajectory on which the computation began. Similarly,
ordinary interval arithmetic (i. e. intervals of floating-
point numbers) yields poor enclosures after few iter-
ations. In most cases the computation breaks down
because of overflow. UsingintpakX ’s multiple pre-
cision intervals, we can compute enclosures of orbits
for a considerably longer time with high accuracy.

Consider the simple dynamic system as given by
the logistic equation:

xn+1 = a · xn · (1 − xn) , n ≥ 0 (1)

for somea ∈ [0, 4] andx0 ∈ (0, 1).
On the computer, we can compute this iteration

with

(i) ordinary floating-point arithmetic,

(ii) ordinary interval arithmetic, or

(iii) multiple precision interval arithmetic.

However, for the cases (ii) and (iii) it would be better
to first rewrite the right hand side of (1) such that it is
better suited for the application of interval arithmetic:
For narrow intervals it is well known in interval analy-
sis that a tighter interval enclosure can be obtained by
using amean value forminstead of an interval evalu-
ation of the originally given expression.

The ordinary interval evaluation of a function
f(x) over an intervalX, denoted asf(X), is obtained
via replacing all occurrences ofx in f by the interval
X and via replacing all operations by the correspond-
ing interval operations. The mean value form is de-
fined byfm(X) := f(y) + f ′(X)(X − y) with some
fixed valuey ∈ X, e.g., the midpoint. Thus, in the

cases (ii) and (iii) we may replace the right hand side
of (1) by its mean value form, i. e. , by

Xn+1 = a · (yn(1 − yn) + (1 − 2Xn) · (Xn − yn))
with yn ≈ midpoint of Xn,

(2)

whereXn is an interval in case (ii) and a multiple
precision interval in case (iii). Rewriting (1) as (2)
does not improve the quality of ordinary floating-point
computation, which is still executed using (1).

The following Maple source code usesintpakX
package to compute orbits for this equation. The re-
sults show the approximationsxn obtained by ordi-
nary point evaluations of (1) and the enclosuresXn

as obtained by multiple precision interval arithmetic
using (1), and (2).

Repeat the computation ofx1000 using a 10, 15,
20, ... decimal digits arithmetic. The resulting ap-
proximations tox1000 are all very different. Probably
no one is close to the true (mathematical) value. The
iteration exhibits chaotic behaviour. What is the true
value ofx1000?

>restart;
>for k from 10 by 5 to 150 do
> Digits := k;
> nmax := 1000;
> a := 3.75;
> x := .5;
> for n to nmax do n;
> x := a * x* (1-x)
> end do;
> Digits := 10:
> print(k, 1.0 * x); #leading 10 digits
>end do

number of approximate
digits used to x_1000

10 .7293739044
15 .8216993992
20 .4943718351
25 .8710298086
30 .8583590713
35 .6772533909
40 .8641361707
45 .8716010232
50 .9080844468
55 .6782837431
60 .7405191406
65 .8541118421
70 .5064471708
75 .7876072081
80 .8967126257
85 .8116148942
90 .4209051185
95 .8542875712

100 .8011059764
105 .8606952069
110 .9282428337
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115 .7947201576
120 .2817552092
125 .8090124521
130 .3571806913
135 .3516307600
140 .8158439588
145 .8115533519
150 .8464402463

Is 8 the first decimal digit ofx1000?
Simple idea: all iterates are rational numbers.

Why not using Maple’s rational number arithmetic?
First we define a Maple function returning the

number of decimals used to represent the rational
number (number of digits of the numerator and de-
nominator are added):

> decDigits:= (x::rational)->
> ceil(ilog10(numer(x)))
> + ceil(ilog10(denom(x)))+2:

We add two simple procedures to compute the
elapsed time:

>tic:=proc() global tictoctime:
> tictoctime:=time(): #start timing
>end proc:

>toc:=proc() #compute elapsed time
> time()-tictoctime
>end proc:

Now let us try to compute the exact iteratesxn

using Maple’s rational arithmetic:

> tic():
> nmax := 26;
> a := 15/4; #constant a
> x := 1/2; #initial value x0
> for n to nmax do
> x := a * x* (1-x):
> if n < 4 then
> print("x:", x);
> end if;
> print("n:", n, "digits:",
> decDigits(x), "time:", toc());
> end do:

nmax := 26
a := 15/4
x := 1/2

"x:", 15/16
"n:", 1, "Digits:", 4, "time:", 0.

"x:", 225/1024
"n:", 2, "Digits:", 7, "time:", 0.

"x:", 2696625/4194304
"n:", 3, "Digits:", 14, "time:", 0.

n digits elapsed time

4 28 0.
5 57 0.
6 116 0.
7 230 0.
8 462 0.
9 924 0.

10 1849 0.
11 3698 0.
12 7398 0.
13 14796 0.4e-2
14 29592 0.8e-2
15 59184 0.20e-1
16 118370 0.52e-1
17 236739 0.140
18 473479 0.352
19 946958 0.612
20 1893916 1.152
21 3787834 2.152
22 7575668 4.296
23 15151335 10.153
24 30302672 19.193
25 60605342 44.419
26 121210686 86.701

Numerators and denominators become very soon
very large integers. To representx26 121210686 dec-
imal digits are necessary! Also, the computing time
increases dramatically. It already takes more than one
minute to getx26. The time for computing the next
iterate is about twice the time for computing the cur-
rent iterate. This leads to the conclusion that using
Maple it is not possible to compute more than say
a few dozen iterates. It is far out of reach to com-
pute (the rational number)x1000. Thus, we still do not
know the first correct digits ofx1000.

Now let us try to make use of theintpakX pack-
age. It provides a multiple precision interval arith-
metic. Operator symbols denoting the interval opera-
tions are&+,&−,&∗, and&/ (Maple does not allow
operator overloading for the basic arithmetical opera-
tors).

>libname:=
>"/home/kraemer/intpakX/lib", libname
libname := "/home/kraemer/intpakX/lib",

"/home/kraemer/maple10/lib"
>with(intpakX): #use the package
>nmax:= 1000; #enclose x_1000
>Digits:= nmax; #use 1000 digits
>a:= construct(3.75); #degenerate interval
>x:= construct(0.5); #degenerate interval
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>tic(): #start timing
>for n from 1 to nmax do
> x := (a & * x) & * 1 &- x; #interval
>od; #expression
>toc(); #elapsed time

>Digits := 10;
>1.0 & * x; #print just a ten-digit enclosure

nmax := 1000
Digits := 1000

a := [3.75, 3.75]
x := [0.5, 0.5]

1.4746
[.7917467408, .7917467410]

We see a very satisfactory result. Using a
1000 digits multiple precision interval arithmetic
intpakX shows within one and a half second that
x1000 ∈ [.7917467408, .7917467410]. Now we see
that the first decimal digit ofx1000 is not 8 but 7. Less
mantissa digits would be enough to perform this naive
interval computation successfully (try to find the min-
imal precision!).

As already pointed out: Using a Mean-Value-
Form for the iteration function reduces the number
of digits needed to get an accurate enclosure pretty
much:

#Create Mean-Value-Form
> f:= (x,y)-> a * (y * (1-y)+(1-2 * x) * (x-y));
#Create corresponding interval expr.
>F:= inapply(f(x), x):
f := proc (x, y)

options operator, arrow;
a* (y * (1-y)+(1-2 * x) * (x-y))

end proc
>nmax:= 1000; #comupte x_1000
>Digits:= 180;
>a:= construct(3.75); #degenerat interval
>x:= construct(0.5);
>for n from 1 to nmax do
> y:= midpoint(x);
> x:= F(x,y); #use Mean-Value-Form
>od;
>Digits:= 10;
>1.0 & * x; #ten-digit enclosure

nmax := 1000
Digits := 80

a := [3.75, 3.75]
x := [.5, .5]

[.7917467408, .7917467410]

Using the Mean-Value-Form a 180 digits in-
terval arithmetic leads to the enclosurex1000 ∈

[.7917467408, .7917467410]. Here, some remarks are
appropriate:

• Using ordinary multiprecision floating point
arithmetic 150 digits are not enough to get the
first digit of x1000 right (see our fist approach).
Using the interval Mean-Value-Form allows the

accurate computation of at least the first 15 deci-
mal digits using a 180 digits arithmetic.

• In spite of the fact that compared to the naive in-
terval evaluation we may reduce the precision of
the arithmetical operations in the Mean-Value-
Form this must not result in faster algorithms.
Indeed, our mean-value computation takes about
two and a half seconds (compare this with the
timing result corresponding to the naive interval
evaluation).

Up to now we have seen that multiple precision
interval computations allow to verify (long term) or-
bits of the dynamical system whereas results com-
puted by point computations may be totally incorrect.

Let us now consider the sensivity of orbits with
respect to small changes in the inital data. We want to
compute two orbits, the first one starting atx0 := 0.5
and the second one starting aty0 := x0 + ε. The
following interval computations show that usingε :=
10−80 the x andy orbits are distinguishable numeri-
cally for the iterates at least up tox1000 andy1000.

> max := 1000;
> Digits := 200;
> a := construct(3.75):
> x := construct(1/2):
> eps := 1e-80;
> y := x &+ construct(eps):
> for n from 1 to nmax do
> midx := midpoint(x):
> x := F(x, midx): #compute x_n
> midy := midpoint(y):
> y := F(y, midy): #compute y_n
> end do:
> Digits := 10:
> 1.0 & * x; #enclosure x_1000
> 1.0 & * y; #enclosure y_n1000

nmax := 1000
Digits := 200
eps := 0.1e-79
[.7917467408, .7917467410]
[.8102867018, .8102867020]

It holds x1000 ∈ [.7917467408, .7917467410]
and y1000 ∈ [.8102867018, .8102867020]. The two
intervals are disjoint. Initially nearby points begin to
diverge.

Let us now takeε := 10−90. How many
leading digits ofx1000 and y1000 are equal? How
many digits of the results must must be com-
puted accurately to be able to distinguish the
coresponding orbits at the iterates with index
1000? We find the following enclosures:x1000 ∈

[.79174674092244363768, .79174674092244363770]
and y1000 ∈ [.79174674092244363652,
.79174674092244363654]. In both cases the leading
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17 digits are guaranteed to be.79174674092244363.
Thus, x1000 and y1000 are distinguishable if at least
18 digits are known accurately. 17 digits are not
sufficient for this purpose.

3 Remarks on intpakX

The most important feature of the package is the in-
troduction of new (multiple precision) data types into
Maple for real intervalsand complex disc intervals.
A range of operators and applications for these data
types have been implemented (with separate names),
so that the new interval types do not rely on the
(rough) standard Maple notion of an interval. Also
rounding is done separately to provide the correct
rounding mode as needed in interval computation. So,
intpakX intervals can be used safely with the imple-
mented operators.

The graphical functions included inintpakX
make it more convenient to use Maple graphics for
interval computations. They use Maple graphics fea-
tures to offer special output for the visualization of
the intervals resulting from the concernedintpakX
functions.

As mentioned above,intpakX defines Maple
types for real intervals and complex disc intervals.

On the level of basic operations,intpakX in-
cludes the four basic arithmetic operators, including
extended interval division as an extra function. Fur-
thermore there are power, square, square root, loga-
rithm and exponential functions (note that square is
implemented separately from general multiplication
as needed for intervals), a set of standard functions
and union and intersection. Reimplementations of
the Maple construction, conversion and unapplication
functions are added.

As applications,Verified Computation of Zeros
(Interval Newton Method) with the possibility to find
all zeros of a function on a specified interval, and
Range Enclosurefor real-valued functions of one or
two variables are implemented, the latter using either
interval evaluation or evaluation via the mean value
form and adaptive subdivision of intervals. The user
can choose between a non-graphical and a graphical
version of the above algorithms displaying the result-
ing intervals of each iteration step.

Additionally, there is a range of operators for
complex disc arithmetic. Besides the basic arithmetic
operators, there are area-optimal multiplication and
division as an alternative to carry out these operations.
As a further function, the complex exponential func-
tion has been implemented. Range enclosure for com-
plex polynomials serves as an application for complex
interval arithmetic.

The package intpakX [4, 7, 8] is freely
available on the web. How to installintpakX
and how to use this Maple Power Tool in your
own worksheets is described in the source files,
which are publicly available on the web (see
http://www.math.uni-wuppertal.de/
˜xsc/software/intpakX/ ). From this link you
get the most recent version ofinpakX (the version
presented by Maplesoft may an older version). In ad-
dition, the preprintIntroduction to the Maple Power
Tool intpakX , is available on the web [7]. Its inten-
tion is to be a primer tointpakX .

Please note:intpakX assumes that the basic op-
erations provided by Maple are accurate to at least
one unit in the last place (ulp) with respect to the ac-
tual value of Maple’s environment variableDigits
(number of decimal digits Mapel uses to represent
software floating-point numbers). If so, it is guaran-
teed thatintpakX computes enclosures for ranges
of expressions build from these basic operations. Up
to now, a violation of the assumption is not known by
the authors ofintpakX .

A similar statement (1 ulp accuracy) about the ac-
curacy of Maple functions like exp, log, sin, Bessel,
etc., is probably not correct. ThereforeintpakX
uses several guard digits in its computations. Nev-
ertheless computation of expressions involving such
functions can not be guaranteed to enclose the true
range! Despite this limitation, we are convinced that
intpakX is a valuable didactical tool to illustrate in-
terval algorithms/methods. As soon as error bounds
for Maple funcions will be available,intpakX will
use the bounds to compute guaranteed enclosures.

4 Conclusion

It may be a hard job to compute accurate numerical re-
sults in the field of chaotic systems. Traditional (mul-
tiple precision) floating point arithmetics do not give
guaranteed results. Even with a lot of experimental
work using different precisions it is not possible to get
numerical results with mathematical rigor. In contrast
with this unsatisfactory situation, using a multiple pre-
cision interval arithmetic leads to guaranteed results.
Our Maple power toolintpakX offers among oth-
ers such an arithmetic. In this paper we have used
this package successfully to get some rigorous mathe-
matical statements about the chaotic behaviour of the
logistic map.
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[5] W. Krämer, U. Kulisch, and R. Lohner,
Numerical Toolbox for Verified Com-
puting II - Advanced Numerical Prob-
lems. Draft version, available from
http://www.uni-karlsruhe.de/
˜Rudolf.Lohner/papers/tb2.ps.gz

[6] Introduction to the Maple Power Tool
intpakX , Preprint BUW WRSWT 2006/9,
University of Wuppertal, 2006, pp. 1–31.
To appear in: Bulgarian Serdica Journal of
Computing.
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