
Optimal Solution to Matrix Parenthesization Problem Employing

Parallel Processing Approach

MUHAMMAD HAFEEZ, DR. MUHAMMAD YOUNUS, ABDUR REHMAN, ATHAR MOHSIN

Computer Science Department, College of Telecommunication Engineering

(National University of Sciences and Technology), Hamayun Road, Rawalpindi - PAKISTAN

E-mail: chmhafeez11@yahoo.com

Abstract: - Optimal matrix parenthesization problem is an optimization problem that can be solved using

dynamic programming. The paper discussed the problem in detail. The results and their analysis reveal that

there is considerable amount of time reduction compared with simple left to right multiplication, on applying the

matrix parenthesization algorithm. Time reduction varies from 0% to 96%, proportional to the number of

matrices and the sequence of dimensions. It is also learnt that on applying parallel matrix parenthesization

algorithm, time is reduced proportional to the number of processors at the start, however, after some increase,

adding more processors does not yield any more throughput but only increases the overhead and cost. Major

advantage of the parallel algorithm used is that it does not depend on the number of matrices. Moreover, work

has been evenly distributed between the processors.

Key-Words: - Matrix Parenthesization Problem Parallel Processing Algorithm

1 Introduction
In most systems there are many processes that are

running simultaneously. Recall that multiplying an

x x y matrix by a y x z matrix creates an x x z matrix.

Thus multiplying a chain of matrices from left to right

might create large intermediate matrices, each taking a

lot of time to calculate. Matrix multiplication is not

commutative, but it is associative, so the chain can be

parenthesized in whatever manner deemed best

without changing the final product. A standard

dynamic programming algorithm can be used to

construct the optimal parenthesization. Note that

optimizing is over the sizes of the dimensions in the

chain, not the actual matrices themselves.

The problem is not actually to perform the

multiplications, but merely to decide in what order to

perform the multiplications. For example, if there are

four matrices A, B, C, and D, there may be:
((AB)C)D=(AB)(CD)=A((BC)D)=(A(BC))D=A(B(CD))

However, the order in which the product is

parenthesized affects the number of simple arithmetic

operations needed to compute the product, or the

efficiency. For example, suppose to multiply a

sequence of matrices with dimensions A(30 × 1),

B(1 × 40), C(40 × 10) and D(10 x 25). Multiplying an

X x Y matrix by a Y x Z matrix takes X x Y x Z

number of multiplications. The number of arithmetic

operations required for three different

parenthesizations are:

((AB)C)D=30x1x40 + 30x40x10 + 30x10x25= 20,700

(AB)(CD)=30x1x40 + 40x10x25 + 30x40x25= 41,200

A((BC)D)=1x40x10 + 1x10x25 + 30x1x25 = 1,400

Clearly the last method is the more efficient. Now that

the problem is identified, how to determine the

optimal parenthesization of a product of n matrices?

One of the way is to go through each possible

parenthesization (brute force), but this would require

time O(2
n
), which is very slow and impractical for

large n. The solution, is to break up the problem into a

set of related subproblems. By solving subproblems

one time and reusing these solutions many times, the

time required is reduced drastically. This is known as

dynamic programming [1][2].

The matrix-chain multiplication problem can be stated

as follows: given a chain (Al, A2,…,An) of n matrices,

where for i = 1, 2,…,n, matrix A; has dimension

pi-l x pi, fully parenthesize the product Al, A2,…,An, in

a way that minimizes the number of scalar

multiplications. Note that in the matrix-chain

multiplication problem, matrices are not actually

multiplied; rather the goal is only to determine an

order for multiplying matrices that has the lowest cost.

Typically, the time invested in determining this

optimal order is more than paid for by the time saved

later on when actually performing the matrix

multiplications (such as performing only 1,400 scalar

multiplications instead of 41,200 multiplications).

Undermentioned standard pseudocode assumes that

matrix A; has dimensions pi-1 x pi for i = 1,2,…,n. The

input is a sequence p = (po, pl,…pn), where

length[p] = n+1. The procedure uses an auxiliary table

m[1…n, 1…n] for storing the m[i, j] costs and an

auxiliary table s[l…n,1…n] that records which index

of k achieved the optimal cost in computing m[i, j].

The table s is used to construct an optimal solution

[3][4][6].

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 235

 2

2 Matrix Parenthesization Algorithm
n � length[p]-1 {p is an array containing pi-1 to pj

 and n is number of matrices in chain}

for i � 1 to n

 do m[i,j]�0 {Single matrices take 0 multiplications}

for l � 2 to n {l is length of chain}

 do for i � 1 to n – l + 1 {All possible starting

 indices for length l}

 do j � i + l – 1{Ending index of chain of length l}

 m[i,j] � INF {Large value to start to

 find minimum}

 for k � i to j –1 {Try all possible splits of

 this chain}

 do q � m[i,k]+m[k+1,j]+ pi-1pkpj

 {Smaller chains are already computed}

 if q < m[i,j] {If minimum, then store it}

 then m[i,j] � q

 s[i,j] � k

 return m, s

Table 1 : Completed Arrays m and s

m s

 1 2 3 4 2 3 4

1 0 224 180 216 1 1 1 1

2 0 84 120 2 2 3

3 0 63 3 3

4 0 4

Table 1 represents the application of the algorithm for

four matrices with dimensions 8 x 4, 4 x 7, 7 x 3 and

3 x 3. Top most right entry represents the optimal

parenthesizations. Figure 1 represents the

corresponding dynamic programming formulation for

finding an optimal matrix parenthesization for this

chain. A square node in the figure represents the

optimal cost of multiplying a matrix chain. A circle

node represents a possible parenthesization.

2.1 Analysis of Implementation of Algorithm
The results for implementation of algorithm for

optimal solution to matrix parenthesization problem

are shown in Table 2 and Figure 2. It is evident that

there is considerable amount of time reduction

proportional to the number of matrices and the

sequence of dimensions on applying the Matrix

Parenthesization Algorithm. It also seems that

percentage of time reduction to the linear left to right

arithmetic operations is less, if the first dimension is

smaller. Similarly, if the first dimension is larger,

percentage of time reduction to the linear left to right

arithmetic operations is more. It is because of the

reason that in linear left to right arithmetic

multiplication, first dimension keeps on multiplying

with all of the rest of the dimensions. So if the first

dimension is larger, it gives larger linear left to right

arithmetic multiplication value.

 Reductions of Arithmetic Operations

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

3 6 9 12 15 18 21 24

Number of Matrices

A
ri
th
m
e
ti
c
 O
p
e
ra
ti
o
n
s

Left to Right

Multiplication
Optimal

Multiplication

Figure 2:Reductions of Operations in Optimal Solution

No. of Matrices:1-24, Sequence of Dimensions:1-100

Figure 1: Optimal Matrix Parenthesization for a Chain of Four Matrices

216

8x4
A

7x3

C

3x3
D

4x7
B

224

 8x4x7
224

84

63

180

120

 =8x7x3+224

 392

 180

=8x4x3+84
=4x3x3+84
 120

 147

=4x7x3+63

 =8x3x3+180

 252

 455

=8x7x3
+224+63
 216
=8x4x3+120

84

 4x7x3

 8x4x7

63

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 236

 3

Table 2: Implementation of Matrix Parenthesization Algorithm

 No. of Matrices: 1-24, Sequence of Dimensions: 1-100

 No. of

Matrices
Sequence of Dimensions

Optimal

Arithmetic

Multiplica-

tions

Left to

Right

Multiplica-

tions

Optimal

Parenthesizations

%age

Reduction

of Time

(d-c)/d*100

a b c d e f

3 9,95,21,78 32697 32697 (AB)C 0

6 30,10,71,58,9,25,22 56982 183750 A((B(CD))(EF)) 69

9 94,67,56,17,80,68,10,78,7,5 98220 1273230 A(B(C(D(E(F((GH)I)))))) 92

12 42,54,49,22,62,46,93,97,82,

59,24,86,56

970214 1777734 ((A(BC))((((((DE)F)G)H)I

)J))(KL)

45

15 27,98,89,40,36,82,6,11,3,23,

15,91,87,35,3,43

101322 816480 (A(B(C(D(E(F((GH)((IJ)(

K(L(MN)))))))))))O

88

18 94,30,63,79,52,10,6,13,93,9

7,3,8,67,40,38,6,89,61,71

139845 3518984 (A(B(C(D(E(F(G(H(IJ))))

)))))(((((((KL)M)N)O)P)Q

)R)

96

21 57,92,76,77,28,13,47,27,3,6

7,89,14,93,16,24,34,14,83,8

9,92,33,19

166938 2827257 (A(B(C(D(E(F(GH)))))))((

((((((((((IJ)K)L)M)N)O)P)

Q)R)S)T)U)

94

24 79,68,62,22,98,35,62,99,21,

39,91,79,81,31,11,4,87,90,9

0,72,57,92,36,72,59

377216 6688377 (A(B(C(D(E(F(G(H(I(J(K

(L(M(NO))))))))))))))((((((

((PQ)R)S)T)U)V)W)X)

94

 3 Parallelization
Refer to the time required to find an optimal

product sequence for a chain of matrices as the

ordering time and the time required to execute the

product sequence as the evaluation time [7]. Many

parallel algorithms aimed at reducing the evaluation

time have been studied. Sascha Hunold proposed

“Multilevel Hierarchical Matrix Multiplication on

Clusters” [8]. Manojkumar Krishnan proposed

“Memory Efficient Parallel Matrix Multiplication

Operation for Irregular Problems” [9] and Qingshan

Luo gives “A Scalable Parallel Strassen’s Matrix

Multiplication Algorithm for Distributed Memory

Computers” [10]. Any of the mentioned approach

to reduce evaluation time can be used along with

the parallel algorithm aimed at reducing the

ordering time. Some of the parallel algorithms to

reduce ordering time have been studied using the

dynamic programming method and the convex

polygon triangulation method [11] [12], however

the research is scarce. Figure 3 shows the filling of

m and s table diagonally for optimal matrix

parenthesization problem using pn processors,

proposed by Grama and Gupta [5]. One of the

major drawbacks of the approach is that it requires

number of processors equal to the number of

matrices, difficult to fulfil in most of the cases.

Moreover, the processors do not share the uniform

work load. Although Strate [13] introduced an

important idea with clue that the goal should always

be to minimize the idle time of all the processors,

but not exploited in the mentioned approach.

3.1 Parallel Processing Algorithm
Table 3 shows the same Table 1 with the sequence

of calculations. The sequential algorithm begins by

solving all subproblems of length two matrices.

Figure 3: Using pn Processors Proposed by

 Grama and Gupta

Table 3 : Sequence of Calculations of Array m

 1 2 3 4

1 0 224 180 216

2 0 84 120 Diagonal 3

3 0 63 Diagonal 2

4 0 Diagonal 1

That is, the cost of multiplying matrices A1A2,

A2A3, and A3A4 are determined. The cost is 224, 84

Diagonal 1

Diagonal 2

Diagonal 7

Diagonal 6

Diagonal 0

P0 P1 P2 P3 P4 P5 P6 P7

(1,8)

(2,8)

(3,8)

(4,8)

(5,8)

(8,8)

(1,7)

(2,7)

(3,7)

(4,7)

(5,7)

(6,6)

(5,6)

(4,6)

(3,6)

(2,6)

(1,6)

(2,5)

(3,5)

(4,5)

(5,5)

(4,4)

(3,4)

(2,4)

(1,4)(1,3)

(2,3)(2,2)

(3,3)

(1,5)

(7,8)(7,7)

(6,7) (6,8)

(1,1) (1,2)

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 237

 4

and 63 respectively. These values are entered in the

above table along the first main diagonal with

sequence of top to bottom and left to right. The next

diagonal, entries A1A3 and A2A4 are calculated

based on the previous results. The process

continues until finally the A1A4 entry in the table is

determined. This is the optimal solution. The

sequential algorithm solves all subproblems on the

main diagonal of the table, followed by each of the

upper diagonals until a solution is determined in the

upper right comer of the table. Under mentioned

parallel algorithm for allocating tasks for the

optimal solution to matrix parenthesization problem

views the table as shown in Figure 4.

TASKING PROCESSORS (P)

t � (n*n)-n)/2 {Total calculations for n matrices}

trcountbottom(m) � 1 {Temp row count from bottom}

trcounttop(m) � n-1 {Temporary row count from top}

p � number of processors {Total number of processors}

Avcalc � t/p {Average calculations for each processor}

for m � 0 to p-1 {For all processors}

 tcalc(m) � 0 {Temporary calculations for p(m)}

 while calcp(m)<Avcalc {calcs for each processor}

 do calcp(m) � tcalcp(m){Calcs for p(m)}

 tcalcp(m) � tcalcp(m) + trcountbottom

rcountbottom(m) � trcountbottom(m)

{Row count from bottom}

rcounttop(m) � trcounttop(m)

{Row count from top}

 trcountbottom(m) ++

 trcounttop(m) - -

 End while

 return rcounttop(m),calcp(m)

End for

3.2 Functioning of Parallel Algorithm
p(0), p(1), p(2)……p(n) are the processors which

are numbered from bottom to top. The rows are

allocated numbers from top to bottom as i and also

bottom to top i.e. matching to processors p(0) to

p(n). Processor 1 will calculate the bottom set of

rows in the table, processor 2 will calculate the next

set of rows, until processor n calculates the topmost

set of rows. In this arrangement processor n will

finally determine the solution.

Each processor simultaneously calculates the

entries in the portion of the table it is assigned. The

entries in the table are processed diagonally left to

right, top to bottom. This is almost same to the

traditional sequential algorithm. Each time

processor i, (i = 0...n), completes an entire diagonal,

the entries is sent to processor i+1. Furthermore,

each time processor i, begins to work on a new

diagonal, it receives entries for the same column

previously calculated from processor i - 1. Figure 4

illustrates these principles. In this example N=26

matrices, and n=4 processors. The numbers in the

table entries represent the order in which they are

calculated. Each processor has the same order. The

x entries indicate calculated table entries.

The goal is to keep a processor busy, while at the

same time minimizing the idle time of the other

processors. Several factors must be taken into

consideration [13]. Notice calculating each table

entry by processor i requires more CPU time than

calculating a table entry by processor i-1. This is

because all previously calculated column entries

from higher numbered processors must be

considered. In considering all these factors the table

should be partitioned in such a manner that, for a

given problem, there should be proper load balance.

In the above mentioned algorithm total number of

calculations are ((n*n)-n)/2. Parallel processing

algorithms for optimal solution to matrix

parenthesization problem are mentioned below.

First algorithm is used for processor p(0). Second

algorithm is used for all other processors p(i).

Major changes from the standard matrix

parenthesization algorithm are underlined.

PARALLEL MATRIX PARENTHESIZATION(P(0))
n � length[P]-1{p is an array containing pi-1 to pj and n

 is the number of matrices in chain }

for i � 1 to n

 do m[i,j] � 0{Single matrices take 0 multiplications}

for l � 2 to n-rcounttop(1) {l is length of chain starting

 from top of the processor p(o)}

do for i � rcounttop(1)+1 to n–l+1 {All possible

 starting indices for length l}

 do j � i + l – 1{Ending index of chain of length l}

 m[i,j] � INF {Large value to start to find minimum}

 for k � i to j {Try all possible splits of this chain}

 do q � m[i,k]+m[k+1,j]+ pi-1pkpj

 {Smaller chains are already computed}

 if q < m[i,j] {If minimum, then store it}

 then m[i,j] � q

 s[i,j] � k

 return m, s

PARALLEL MATRIX PARENTHESIZATION(P(i))
for l � 2 to n-rcounttop(m+1) {l is length of chain

 starting from top of the processor p(m)}

 if l < (n – rcounttop(m))+2 then ilimit = rcounttop(m)

 else ilimit = n-l+1

 for i = rcounttop(m+1)+1 to ilimit

 do j � i + l – 1{Ending index of chain of length l}

 m[i,j] � INF {Large value to start to find min}

 for k � i to j {Try all possible splits of chain}

 do q � m[i,k]+m[k+1,j]+ pi-1pkpj

 {Smaller chains are already computed}

 if q < m[i,j] {If minimum, then store it}

 then m[i,j] � q

 s[i,j] � k

return m, s

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 238

 5

j

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Processors/
Rows from Bottom

1 0 1 5 9 x 25

2 0 2 6 10 x 24 P(3)

3 0 3 7 x 23

4 0 4 8 x 22

5 0 1 5 9 x x x x x x x x x x x x x x x x x x 21

6 0 2 6 10 x x x x x x x x x x x x x x x x x 20

P(2) 7 0 3 7 x x x x x x x x x x x x x x x x x 19

8 0 4 8 x x x x x x x x x x x x x x x x 18

9 0 1 6 x x x x x x x x x x x x x x x 17

10 0 2 7 x x x x x x x x x x x x x x 16

11 0 3 8 x x x x x x x x x x x x x 15

P(1) 12 0 4 9 x x x x x x x x x x x x 14

13 0 5 x x x x x x x x x x x x 13

14 0 1 13 x x x x x x x x x x 12

15 0 2 14 x x x x x x x x x 11

16 0 3 15 x x x x x x x x 10

17 0 4 16 x x x x x x x 9

18 0 5 x x x x x x x 8

19 0 6 x x x x x x 7

P(0) 20 0 7 x x x x x 6

21 0 8 x x x x 5

22 0 9 x x x 4

23 0 10 x x 3

24 0 11 x 2

25 0 12 1

26 0

Figure 4: Sequences of Calculations and Partitioning of Tasks into Rows

 No. of Matrices: 26, No. of Processors: 4

3.3 Implementation of Parallel Algorithm
The results for implementation of parallel algorithm

for optimal solution to matrix parenthesization

problem are shown in Table 4. In the Table 4, number

of matrices are 20 – 100 with number of processors

1 – 10. Figure 5 includes the graph showing reduction

of computations in the parallel algorithm as compared

to single processor with different numbers of

processors. Input includes number of matrices,

number of processors and the dimensions of each

matrix. The column of matrix A must be equal to the

row of matrix B for all the dimensions.

3.4 Analysis of Parallel Processing Algorithm
Analyzing Table 4 with graph of Figure 5, it is

obvious that there is considerable amount of time

reduction proportional to the number of processors at

the start. However, after some increase it is just the

increase of processors without any gain. One should

be mindful of that number and may call it a saturation

point for that input. After that point adding more

Table 4:

Implementation of Parallel Processing Algorithm

No. of Processors: 1-4, No. of Matrices: 20-100

Maximum Computations

by any Processor Using

No. of Processors

No. of

Matrices

Total

Computations

with Single

Processor 2 3 4 6 8 10
20 190 99 85 54 54 70 70
30 435 225 159 135 110 110 135
40 780 402 284 219 185 219 150
50 1225 630 445 364 322 279 279
60 1770 909 642 495 444 392 339
70 2415 1239 875 645 524 462 462
80 3160 1620 1080 882 745 604 532
90 4005 2052 1377 1079 845 684 684

100 4950 2535 1710 1380 945 855 855

78 calcs

75 calcs

78 calcs

94 calcs

i

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 239

 6

 Reduction in Computations

0

1000

2000

3000

4000

5000

6000

20 30 40 50 60 70 80 90 100

Number of Matrices

N
u
m
b
e
r
o
f
C
o
m
p
u
ta
ti
o
n
s

Figure 5:

Reductions of Computations in Parallel

No. of Processors:1-10, No. of Matrices:20-100

processors does not yield any more throughput but

only increases the overhead and cost. Therefore, the

number of processors must be used economically to

get the optimal results.

For number of matrices between 26 and 104, best

results are found till number of processors nine. With

number of matrices 26, best results are received with

number of processors seven. Therefore, one can say

that algorithm is best suited for processors 2 to 10 for

number of matrices till 100. Moreover, the results of

parallel algorithm confirm the results of single

processor algorithm.

4 Conclusion
There is substantial amount of reduction in arithmetic

operations on applying matrix parenthesization

algorithm proportional to the number of matrices and

the sequence of dimensions. It also seems that

percentage of time reduction compared to the linear

left to right arithmetic operations is less, if the first

dimension is smaller. Similarly, if the first dimension

is larger, percentage of time reduction to the linear left

to right arithmetic operations is more. Time reduction

varies from 0% to 96%, proportional to the number of

matrices and the sequence of dimensions. It is also

learnt that on applying parallel matrix

parenthesization algorithm, the amount of time

reduction varies 50% and more, proportional to the

number of processors at the start, however, after some

increase, adding more processors does not produce

any more reduction in time; rather increasing cost and

effort.

References:

[1] Nikos Drakos, “Introduction to Dynamic

Programming, Computer Based Learning,

University of Leeds, Lecture 12, Feb 5, 1996

[2] Dr. Sanath Jayasena, “Dynamic Programming

Algorithms, CS222, Lecture 11, University of

Moratuwa, November 2003

[3] Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein,

“Introduction to Algorithms, The MIT Press,

Cambridge, Massachusett London, England,

McGraw-Hill Book Company, Boston Burr

Ridge, IL Dubuque, IA Madison, WI, New

York San Francisco St. Louis Montreal

Toronto, 2004

[4] “Fundamental Data Structures and

Techniques”, Dynamic Graphics Project

(dgp), Department of Computer Science,

University of Toronto, CSC 270, Fall 2002

[5] Ananth Grama, Anshul Gupta, George

Karypis and Vipin Kumar, “Introduction to

Parallel Computing, Addison Wesley, 2003

[6] Dr. Harry Hochheiser , “The Design and

Analysis of Algorithms, COSC 483, Lecture

10, Department of Computer and Information

Sciences Towson University, 8000 York

Road, Towson, Maryland, Fall 2006

[7] Heejo Lee, Jong Kim, Sung Je Hong, and

Sunggu Lee, “Processor Allocation and Task

Scheduling of Matrix Chain Products on

Parallel Systems”, 2003

[8] Sascha Hunold, Thomas Rauber and Gudula

Runger, “Multilevel Hierarchical Matrix

Multiplication on Clusters”, ICS 04, Saint

Malo, France, Jun 2004

[9] Manojkumar Krishnan, Jarek Nieplocha,

“Memory Efficient Parallel Matrix

Multiplication Operation for Irregular

Problems”, Pacific Northwest National

Laboratory, Richland, ACM, CF 06, Ischia,

Italy, May 2006

[10] Qingshan Luo and John B. Drake, “A

Scalable Parallel Strassen’s Matrix

Multiplication Algorithm for Distributed

Memory Computers”, The University of

South, ACM 0-89791-658-1, 1995

[11] P.G. Bradford, G.J. Rawlins, and G.E.

Shannon, “Efficient Matrix Chain Ordering in

Polylog Time”, SIAM J. Computing, vol. 27,

no. 2, pp.466-490, 1998

[12] A. Czumaj, “Parallel Algorithm for the Matrix

Chain Product and the Optimal Triangulation

Problems”, Research Paper in Institute of

Informatics, Warsaw University, ul Banacha,

Warszawa, Poland, 1993

[13] Steve A. Strate and Roger L. Wainwright,

“Parallelization of the Dynamic Programming

Algorithm for the Matrix Chain Product on a

Hypercube”, The University of Tulsa, 1990

1 Processor

2 Processors

3 Processors

4 Processors
6 Processors
8 Processors
10 Processors

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 240

