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Abstract: This work presents a novel method based on artificial neural networks (ANNs) for the prediction 
of the transient electromagnetic field radiating by generators of electrostatic discharges constructed 
according to an IEC standard. Actual input and output data collected from measurements carried out in the 
High Voltage Laboratory of the National Technical University of Athens are used in the training, validation 
and testing process. The proposed ANN method which can easy and accurate assesses the electromagnetic 
field produced by electrostatic discharges by simply measuring the discharge current can be used by 
laboratories facing either a lack of suitable ESD test equipment or want to compare the results to their own 
measurements. 
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1. Introduction 
Electrostatic Discharge (ESD) is a common and 
destructive phenomenon. Robustness of the electric 
and electronic equipment towards ESD is tested 
according to the IEC 61000-4-2 Standard [1]. The 
standard describes the test procedure of electric 
and electronic equipment under electrostatic 
discharges and defines the waveform of the 
discharge current that the ESD generators must 
produce. 

This paper presents measurements of the electric 
field using H and E-field probes, with the aim of 
contributing the upcoming version of the standard 
[1]. Many researchers have been involved in the 
study of the transient electromagnetic field 
radiating by electrostatic discharges [2-6]. It was 
observed that there is a strong probability that the 
Equipment Under Test (EUT) will pass a test, 
when conducting measurements using a certain 
Electrostatic Discharge (ESD) generator and fail 
when using another, both cases referring to the 
same charging voltage and to the same discharge 
current. This rises from the fact that each ESD 
generator produces a different electromagnetic 
field, causing the induced voltage to differ. This 
work aims to study the produced electric field, 
when the Pellegrini target is mounted on an 
insulating material instead of a metal plate as the 
standard defines, because this way there is a closer 
approach to the real ESD event. 

In this paper artificial neural networks (ANNs) are 
addressed in order to assess the electric and the 
magnetic field radiating by electrostatic discharges. 
ANNs have seen increased usage in recent years in 
various fields such as finance [7], medicine [8], 
industry [9] and engineering [10, 11], due to their 
computational speed, their ability to handle 
complex non-linear functions and their robustness 
and great efficiency, even in cases where full 
information for the studied problems is absent. 

Actual electromagnetic field measurements, 
radiated by electrostatic discharges carried out in 
the High Voltage Laboratory of the National 
Technical University of Athens are used in order to 
train, validate and test the proposed ANN model. 
The proposed ANN model can be used by 
laboratories facing either a lack of suitable ESD 
test equipment or want to compare the produced 
results to their own measurements. Having in mind 
that in the forthcoming revision of the IEC 61000-
4-2 [1], measurements of the radiating 
electromagnetic field during the verification of 
ESD generators will be almost certainly included, 
the authors strongly believe that the proposed 
ANN method will be broadly useful, since the 
electromagnetic field produced by electrostatic 
discharges, can be easily and accurately assessed 
by simply measuring the discharge current. 
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2. Experimental setup 
Fig. 1 shows the experimental set-up for the 
measurement of the magnetic and electric field 
respectively. The current and the magnetic field 
(H-field) or the electric field strength (E-field) for 
various charging voltage levels were measured 
simultaneously, by the 4-channel Tektronix 
oscilloscope model TDS 7254B, whose bandwidth 
ranged from dc to 2.5GHz. The electrostatic 
discharges were contact discharges and they were 
conducted using two Schaffner’s ESD generators. 
The experiment was conducted only for contact 
discharges, because air discharges are difficult to 
be reproduced.  

The ESD generators used were the NSG-433 and 
the NSG-438. The discharge electrode in both 
generators had the same length and it was equal to 
5 cm. In order for the measurement set-up to be 
unaffected by surrounding systems, the experiment 
was conducted in an anechoic chamber. The 
generator’s capacitance was charged at ±2 kV and 
±4 kV the discharge electrode of the ESD 
generator used for the contact discharge 
measurements had a sharp point. The temperature 
and relative humidity were 23 ± 1 oC and 40 ± 4 %, 
respectively. For the current measurement a 
resistive load was used, as the IEC defines. This 
resistive load (Pellegrini target MD 101) was 
designed to measure discharge currents by ESD 
events on the target area and its bandwidth ranged 
from dc to above 1 GHz. The Pellegrini target was 
mounted on an insulating material made of plastic. 
This material was placed on a wooden surface, as it 
can be seen in Fig. 1. The pulses that the ESD 
generators produce are reproducible, as it was 
found by the palm graphs of the ESD current for 
many electrostatic discharges for the same 
charging voltage and for both the ESD generators 
[12].  

 
Fig. 1: Experimental set-up for the measurement of 
the electric or magnetic field. 

The probes that were used for the experiment were 
the loop probe of 3 cm in diameter and the sphere 
probe of 3.6 cm in diameter of the HZ-11 set of 
Rohde & Schwarz, for the measurement of the 
magnetic and electric field respectively. The 
probes were placed at various distances and in two 
perpendicular directions (X and Y axis) at the 
horizontal plane from the discharge point, as it can 
be seen in Fig. 2. At each point (Fig. 2) six 
measurements were conducted measuring each 
time the discharge current and the electric or 
magnetic field. This was done in order to calculate 
the average and the standard deviation of the 
electric field at each point.  

 
Fig. 2: The measurement points in the two 
perpendicular directions on the HCP (Horizontal 
Coupling Plane) where the field probes were 
placed. 
 
 

3. Experimental results 
Fig. 3(a) and Fig. 3(b) depict representative H-field 
waveforms in relation to the discharge current for 
the first 200 ns, respectively, when the H-field 
sensor are placed at a distance of 10 cm (Y1 point) 
from the discharge point for the two ESD 
generators. Fig. 4 and Fig. 5 depict the peak H-
field and E-field, respectively, for charging voltage 
of ±2 kV for the NSG-433 and NSG-438 ESD 
generators. It is obvious that each generator 
produces different electromagnetic field. 
 

 
(a) 

 
(b) 

Figure 3: ESD current and H-field for the two ESD 
generators 10 cm from the discharge point. 
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Figure 4: Peak of H-field for various distances in 
the two perpendicular directions from the 
discharge point, using the NSG-433 and NSG-438 
ESD generators and for two different charging 
voltages  
 

  

Figure 5: Peak of E-field for various distances 
from the discharge point at the X and Y-axis using 
the ESD generators NSG-433 and NSG-438. 
 

 

4. Artificial neural networks 
Artificial neural networks represent a parallel 
multilayer information processing structures. The 
characteristic feature of these networks are that 
they consider the accumulated knowledge acquired 
during training and respond to new events in the 
most appropriate manner, giving the experience 
gained during the training process. The model of 
an ANN is determined according to the network 
architecture, the transfer function and the learning 
rule. In this work a typical neural network model 
known as conventional multilayer perceptron 
model (MLP) has been used. The conventional 
MLP network consists of nonlinear differentiable 
transfer functions. The backpropagation learning 
rules are used to adjust the weights and biases so as 
to minimize the sum squared error of the network. 
This is achieved by continually changing the 
values of the network weights and biases in the 
direction of steepest descent with respect to error 
[13].  

In order to train the network, a suitable number of 
representative examples of the relevant 
phenomenon must be selected so that the network 
can learn the fundamental characteristics of the 
problem. The backpropagation training may lead to 
a local rather than a global minimum. The local 
minimum that has been found may be satisfactory, 

but if it is not, a network with more layers and 
neurons may do a better job. However, the number 
of neurons or layers to add may not be obvious. 
Conventional MLP architecture is generally 
decided by trying varied combinations of number 
of hidden layers, number of nodes in a hidden layer 
etc. and selecting the architecture which has a 
better generalizing ability amongst the tried 
combinations [14].  

Once the training process is completed and the 
weights and bias of each neuron in the neural 
network is set, the next step is to check the results 
of training by seeing how the network performs in 
situations encountered in training and in others not 
previously encountered. 
 
 

5. Artificial neural networks 
implementation 

The goal of this work is to develop an ANN model 
capable to assess with accuracy the electric and 
magnetic field radiating by ESD generators. Eight 
parameters that play important role in the 
assessment of the electric and magnetic field 
radiating by electrostatic discharges are considered 
as the inputs to the neural networks, while as 
outputs are considered the peak value of the 
electric and the peak value of the magnetic field. 
These data, presented in Table 1, constitute actual 
data recorded during measurements carried out in 
the High Voltage Laboratory of the National 
Technical University of Athens, using the method 
and the measurement system presented in section 
2. 
 

Table 1: ANN input and output data. 

Input Variables Output Variables 
- ESD generator (G) - peak value of electric      

  field (Emax) 
- charging voltage (U) - peak value of magnetic  

  field (Hmax) 
- rise time (tr)  
- maximum discharge   
  current (Imax) 

 

- current at 30 ns (I30)  
- current at 60 ns (I60)  
- distance (d)  
- direction (D)  

 

Several hundreds of measurements have been 
performed using each one of the two ESD 
generators, i.e. the NSG-433 and the NSG-438 
produced by Schaffner. In each one measurement 
the parameters which varied and could take 
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different values were: a) the type of the ESD 
generator (NSG-433 or NSG-438), b) the 
generator’s charging voltage (±2 kV, ±4 kV), c) 
the two perpendicular directions (direction X and 
direction Y) (Fig. 2), d) the distances from the 
discharge point on the metal plane (10 cm, 20 cm, 
30 cm, 40 cm for direction X and 10 cm, 15 cm, 20 
cm, 25 cm, 30 cm, 35 cm, 40 cm for direction Y) 
and e) the current waveform parameters (rise time, 
maximum discharge current, current at 30 ns and 
current at 60 ns). Thus, these several hundreds of 
measurements constitute combinations of all the 
above varying parameters. 

In order to address the assessment of the electric 
and magnetic field radiating by electrostatic 
discharges a multi layer perceptron ANN was 
considered. As it is mentioned earlier each ANN 
model is determined according to its structure, the 
transfer function and the learning rule, which are 
used in an effort the network to learn the 
fundamental characteristics of the examined 
problem. The structure of the networks i.e. the 
number of hidden layers and the number of nodes 
in each hidden layer, is generally decided by trying 
varied combinations for selecting the structure with 
the best generalizing ability amongst the tried 
combinations, considering that one hidden layer is 
adequate to distinguish input data that are linearly 
separable, whereas extra layers can accomplish 
nonlinear separations [15]. This approach was 
followed, since the selection of an optimal number 
of hidden layers and nodes for a MLP network is 
still an open issue, although some papers have 
been published in these areas [16].  The designed 
and tested MLP ANN models were combinations 
of three learning algorithms (the Gradient Descent, 
the Quasi-Newton and the Levenberg-Marquardt), 
three transfer functions (the Hyperbolic Tangent 
Sigmoid, the Logarithmic Sigmoid and the Hard-
Limit) and several different structures (1 to 3 
hidden layers and 2 to 30 neurons in each hidden 
layer). 

The proposed ANN models were trained using the 
MATLAB Neural Network Toolbox [17]. One 
thousand seven hundred and sixty values of each 
input and output data, were used to train and 
validate the artificial neural network. These data 
refer to measurements conducted with each one of 
the two ESD generators in every possible 
combination of generator’s charging voltage, 
distance from the discharge point on the metal 
plane, perpendicular direction and current 
waveform parameter. In each training iteration 
(epoch), 20 % of random data (i.e. three hundred 

fifty two) were removed from the training set and a 
validation error was calculated for these data. The 
training processes were repeated until a root mean 
square error between the actual outputs (peak value 
of electric field and peak value of magnetic field) 
and the desired outputs reach the goal of 0.5 % or a 
maximum number of epochs (it was set to 10,000), 
is accomplished [18].  

Finally, the estimated values of the electric and 
magnetic fields were checked with the values 
obtained from situations encountered in the 
training, i.e. the one thousand seven hundred and 
sixty values and others which have not been 
encountered. 

 
Table 2: ANN architectures. 

No. Structure Epochs Learning 
Rule 

Transfer 
Function 

1 8/19/8/2 8348 Lev-Mrq Log-Sig 
2 8/13/11/2 9629 Grd-Desc Log-Sig 
3 8/22/24/2 10000 Lev-Mrq Hyp-Tang 
4 8/11/26/4/2 9711 Grd-Desc Hyp-Tang 
5 8/7/8/10/2 9509 Grd-Desc Log-Sig 
6 8/26/21/2 10000 Qua-New Log-Sig 
7 8/10/11/14/2 8612 Grd-Desc Log-Sig 
8 8/14/23/2 9890 Lev-Mrq Hyp-Tang 
9 8/9/8/5/2 9935 Qua-New Hard-Lim 

10 8/14/8/2 10000 Grd-Desc Log-Sig 
11 8/19/25/2 9881 Lev-Mrq Hyp-Tang 
12 8/8/8/15/2 10000 Lev-Mrq Hard-Lim 
13 8/10/13/2 8427 Grd-Desc Log-Sig 
14 8/29/23/2 10000 Qua-New Log-Sig 
15 8/12/9/20/2 10000 Grd-Desc Hyp-Tang 

 

After extensive simulations with all possible 
combinations and the construction of several 
models, it was found that the ANN model that has 
presented the best generalizing ability, had a 
compact structure, a fast training process and 
consumed lower memory than all the other tried 
combinations was consisted of 2 hidden layers 
with 19 and 8 neurons in each hidden layer and 
was using the Levenberg-Marquardt learning rule 
and the Logarithmic Sigmoid transfer function. 
The mean square error of the selected model was 
minimized to the final value of 0.005 within 8348 
epochs. Table 2 presents the fifteen best ANN 
architectures which all fulfill almost equally the 
pre-mentioned criteria. 
 
 

6. Results 

The trained ANN for the estimation of the electric 
and magnetic field radiating by electrostatic 
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discharges has been applied to twenty different 
case studies, which have not taken part in the 
training, validation and testing processes. The 
produced ANN results, which are presented in 
Table 3, have been compared to actual values of 
electric and magnetic field measured during 
experiments performed in the N.T.U.A.’s High 
Voltage Laboratory for exactly the same 
parameters (table 3). 
 

Table 3: Measured electric and magnetic field 
versus ANN results. 

Emax
(kV/m) 

Hmax
(A/m) No. of  

sets Measured ANN Measured ANN 
1 14.56 14.14 -1.04 -1.09 
2 20.07 20.17 -3.57 -3.41 
3 19.92 19.72 -2.34 -2.45 
4 17.21 17.60 -1.59 -1.45 
5 17.00 16.68 -1.10 -1.14 
6 -28.71 -27.86 4.99 5.19 
7 -27.34 -26.43 2.49 2.52 
8 -27.01 -28.09 1.65 1.62 
9 -25.11 -26.11 1.42 1.38 

10 -32.80 -34.11 5.06 5.16 
11 21.47 20.87 -4.22 -3.45 
12 19.41 20.72 -2.52 -2.46 
13 16.81 17.40 -1.69 -1.67 
14 -27.32 -28.75 4.81 5.11 
15 25.61 26.43 -2.36 -2.48 
16 21.91 21.79 -1.61 -1.69 
17 -28.43 -28.57 2.59 2.72 
18 -27.70 -26.81 1.81 1.92 
19 -26.93 -26.01 1.44 1.31 
20 27.35 27.44 -4.65 -4.78 
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Fig. 6: Relative error between measured and 
calculated Emax values. 

Relative error between measured and calculated Hmax values
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 Fig. 6: Relative error between measured and 
calculated Hmax values. 

The results obtained using the developed ANN 
model are very close to the actual measured ones, 
something which clearly implies that the proposed 
ANN method is well working and has an 
acceptable accuracy. Figs 6 and 7 present the 
percentage error between actual measured and 
ANN’s results.  
 
 

7. Conclusions 

In this paper an artificial neural network is 
addressed in order to estimate the electric and 
magnetic field radiating by electrostatic discharges. 
The results of the developed ANN model proved 
its accuracy, since they are very close to the actual 
measured ones, something which clearly implies 
that the proposed ANN method is well working. 
With the proposed ANN method, the produced 
electromagnetic field radiating by electrostatic 
discharges, can be calculated easily and accurately 
by measuring the discharge current. This will be 
extremely useful for the laboratories involved in 
the ESD tests since they will be able to conduct the 
verification of the ESD generators, after the 
revision of the current standard in which 
measurements of the electromagnetic field will be 
compulsory. 
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