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Abstract: Priority scheduling assigns priorities via some task policy. In this work we introduce a priority tasks
allocation model for soft-real-time systems. Task entities are analyzed as continuous stochastic processes with
time restrictions specified by probability density functions with stationary parameters over long periods of time.
We present a technique for task allocation based on the maximum entropy principle as an element of tasks differ-
entiation. The entropy measurement is proposed for hierarchy task allocation.
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1 Introduction

The term “tasks” is referred, in computer systems,
to those processes which are executed in servers per-
forming a specific action. Tasks are software entities
that aim to respond to the information generated by
real-time systems, peripheral devices or internal pro-
cesses [1]. When timing and correctness are require-
ments for task completion, then we are dealing with
real time tasks. In multimedia or communication pro-
cesses, when a typical deadline constraint has to be,
statistically accomplished, we call these tasks soft-
real-time tasks. In fact, we are referring to task timing
constraints as tasks processes.

Since its earliest definitions, tasks have been clas-
sified as: periodic, semiperiodic, aperiodic or sporadic
by various authors, all of these, according to the anal-
ysis context; see [1],[10], [11], or [17]. Periodic tasks
execute their invocation within regular time intervals;
semiperiodic tasks have a variation in their invoca-
tion time, meanwhile an aperiodic task is invoked at
irregular times. A sporadic task is an aperiodic task
with a defined minimum inter-arrival time, [2]. There
are stipulated assumptions to handle these tasks in
scheduling algorithms. In most of the cases, task hier-
archy is established prior to execution.

Scheduling, in real time systems, concerns to the
determination of a temporal ordering for some spec-
ified timing, precedence and resource requirements.
Depending on the nature of the application, schedul-
ing may be classified into different kinds: static

scheduling, dynamic scheduling and mixed schedul-
ing [11].

Static scheduling assumes prior knowledge of the
relevant characteristics of all tasks, which may be
taken in the temporal ordering. When this infor-
mation is available, priority ordering is assigned to
tasks. However, any change in tasks requires complete
rescheduling. On the other hand, dynamic scheduling
algorithms are designed to work with unpredictable
arrival times and possible uncertainties in execution
time or deadline. Priority assignation is done in line,
that is, priority allocation is done at the time a task
arrives.

Priority ordering only has sense when tasks are
preemptable. A task is preemptable by other tasks
with a higher priority if it can be interrupted and
reassumed later meanwhile its overall goal can be
achieved. In dynamic scheduling algorithms, tasks
assigned priorities vary over time from request to re-
quest, but in a statistical way the priority tasks order-
ing remain the same.

Tasks priority allocation depends mostly on the
timing constraints; such as arriving time, computa-
tion time or deadline. Our work in tasks scheduling,
based on priority ordering, aims to deal with these
constraints in an optimal way. In dynamic priority
scheduling algorithms, where tasks characteristics are
known at the time they arrive, statistical knowledge of
the process is required.

In stationary systems where statistical character-
istics over long period of time remain stable; it is

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007      271



possible to determine task timing performance based
on their statistics. Task process outcomes can be de-
scribed by some density distribution function with de-
fined parameters. Probability does not say much about
individual events, but describes a faceable level of task
predictability. Meanwhile the tasks processes repeat
over an infinite number of times, some of these rele-
vant variables are observed; incoming channel, inter-
arrival time or period, relative deadline and, compu-
tations streams. For our analysis, task processes are
considered stochastic stationary processes with de-
fined probability density function; likewise task sta-
tistical behavior can be described. In soft-real-time
systems, it is statistically required that task processes
be completed on their deadlines. This means that a
statistical time service is acceptable.

While the system evolves in time, task knowledge
increases. So that, a measurement of uncertainty can
be described in probability with the maximum entropy
level. That is, the information is more instructive, if it
consists of mean values of task variables. Therefore,
the analysis of task processes estimate a measurement
of the degree in which a system is schedulable. One
of such measurement is the tasks priority allocation
which is the main focus of this work.

The principle purpose of this work is to introduce
a scheduling theory based on continuous stochastic
task processes for soft-real-time. In this work we
determine a priority task allocation technique based
on the maximum entropy principle. In section 6 we
present a simulation result for task hierarchy with this
technique to show how the allocation process is done
while the system evolves.

2 Probability Model

In this section, we analyze the basic timing re-
quirements based on the Queuing Theory [7], [8].
Task sets are considered independent, continuous time
stochastic variables with known probability distribu-
tion functions. Queuing Theory was developed to
model and predict stochastic system behavior with re-
source contention. This theory is based on allowing
randomness in task arrivals, execution times and dead-
lines. It focuses on global system performance mea-
surements, which are usually computed under equi-
librium assumptions. That is, the probability does not
say anything about an individual outcome, but refers
to an ensemble of all possible outcomes were the task
is experimented in a sufficient number of times.

For soft-real-time systems, main timing con-
straints are defined to model stochastic task processes.
Next, the following assumptions are made in order to
simplify the model, nevertheless they can be modified
in future works.

◦ A task becomes active just an instant after it arrives.

◦ All tasks are preemptive and overhead times are neg-
ligible.

◦ A Deadline is the time between two consecutive ar-
rivals.

◦ Starting time and precedence are considered nulls.

Let (Ω,F , P ) be the probability space that de-
scribes task processes. The Ω set throw outcomes
during the sample time. Here F is the σ-field of sets
in Ω. Then P is the probability measure function in
this space. Task constraints are random variables gen-
erated by a random variable family indexed in time,
[12], [13].

3 The Maximum Entropy Principle

In 1948 Claude Shannon [15] published his The-
ory of Communication; in which he derives a mea-
surement of uncertainty, denoted “entropy”. Refer-
ring to some systems with certain physical or concep-
tual entities, where the messages they produce have a
meaning. Shannon proposed a measurement of how
much information is “produced” by these processes,
or better, at which rate information is produced. In
probability analysis, entropy establishes the unifor-
mity of a random variable over a range.

The entropy is a measure function of the un-
certainty of an event outcome. The measurement
of a set of all possible events whose probabili-
ties of occurrence are p1 , p2 , ..., pn is denoted by
H (p1 , p2 , · · · , pn). Entropy, such as a uniformity
measurement, is required to accomplish the following
properties:

◦ H should be continuous in the pi’s.

◦ If all the pi are equal, pi = 1/n, then H should be
a monotonic increasing function of n. With equal
likely events there is more choice, or uncertainty,
when there are more possible events.

◦ If a choice is broken down into successive choices,
the original H should be the weighed sum of the
individual entropy value of each choice.

Next, we present the basic Shannon’s theorem for
Information Theory.

Theorem 1 (Entropy.) The only function H that sat-
isfies the three properties above is in the following
form: (see Shannon [15])

H(p1, p2, · · · , pn) = −K
n∑

i=1

pi ln pi. (1)
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The form H = −∑
pi ln pi is recognized as en-

tropy for the probabilities pi’s because of the math-
ematical similarity with the thermodynamical defini-
tion of entropy [4]. Typically, K is taken as a unit and
the logarithm is taken as the natural ones. In an analo-
gous manner the entropy of a continuous distribution
with density function p(x) is given by:

H(x) = −
∫ ∞

−∞
p(x) ln p(x) dx. (2)

For task processes with known density distri-
butions; mathematical maximization techniques, like
Lagrange Multipliers, are used to determine a mea-
surement of certainness based on the maximum en-
tropy principle [14]. We will use this approach to cal-
culate some measurements in order to meet with task
timing constraints.

4 Timing Constraints

Timing requirements for soft-real-time tasks are
those where, in task service, something missing of a
deadline constraint decreases the performance of the
system but does not jeopardize its correct behavior [1].
That is, a statistical distribution of response times is
acceptable [10].

Definition 2 (Real-time Task). A real-time
task is a stochastic process described by
τ = {A(t, ω), C(t, ω), D(t, ω)}, characterized
by the family of random variables; Arrival time At,
Computation time Ct, and Deadline time Dt; defined
on the same probability space (Ω,F , P ), with t > 0
and ω ∈ Ω.

For a task process, τ(t, ω), we apply a simple
M/M/1 model. The density functions defined below
represent the timing constraints under analysis. For
them, a measurement of uncertainty called entropy is
developed. Through the method of Lagrange Multi-
pliers a unique probability distribution will be found,
for the considered requirements [5]. Stochastic vari-
able constraints obey to statistical task behavior met
in Queuing Theory. The maximum entropy will rep-
resent the measurement of uniformity for the task con-
straints set [3].

Definition 3 (Computation Time). Computation
time is a stochastic process C(t, ω) of τ ; defined as
the time necessary by the processor to execute the task
without interruption. Let fC(t), for t > 0, be the
computation time density function subject to the con-

straints:
∫ ∞

0
fC(t) dt = 1,

∫ ∞

0
t · fC(t) dt = λ, (3)

H(Ct) = −
∫ ∞

0
fC(t) ln fC(t) dt.

(4)

The Computation time is a random variable with a
exponential type density function, thus,

fC(t) =
1
λ

e−t/λ. (5)

The mean Computation time, λ > 0, will repre-
sent the time unit for the rest of the paper. Here, we
want to emphasize the fact that the processor speed
gives the reference for all calculations. So that, tim-
ing requirements for a task will be analyzed in terms
of this λ.

Definition 4 (Arrival Time.) Arrival time is a
stochastic process A(t, ω) of τ , defined as the re-
quired waiting time to observe an arrival occurrence.
This event occurs at a rate Kaλ > 0. It is also re-
ferred to as release time if the task becomes ready for
execution. If fA(t) represents the probability density
function for this time At, then it must satisfy the con-
straints:

∫ ∞

0
fA(t) dt = 1,

∫ ∞

0
t · fA(t) dt = Kaλ. (6)

H(At) = −
∫ ∞

0
fA(t) ln fA(t) dt,

Arrival times also obey an exponential type distribu-
tion function of the form,

fA(t) =
1

Kaλ
e−t/(Kaλ). (7)

Furthermore, arrival times and deadline times are
independent random variables. Also, these processes
have Ka and Kd multiple of the calculation rate λ. For
them,

Ka > 1,

Kd > 1, (8)

Ka ≥ Kd.
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Definition 5 (Deadline). Deadline is a stochastic
process D(t, ω) of τ , defined as the time when a task
must be completed in order not to decrease system
performance level. It is described as the time before
the next request occurs plus the previous arrival task
time with density function fA(t). If fD(t) represents
the probability density function for this time Dt, then
it must satisfy the constraints:

∫ ∞

0
fD(t) dt = 1,

fD(t) =
∫ x

0
fA(t) fD(x − t) dt, (9)

H(Dt) = −
∫ ∞

0
fD(t) ln fD(t) dt.

When Kd = Ka the deadline density function of
Dt is a of the Gamma type

fD(t) =
1

K2
dλ2

(t e−t/Kdλ). (10)

The probability function for a task process has a
known distribution over the time. A measurement of
uniformity for this density function can be expressed
by the maximum entropy [5]. A higher entropy value
correspond to a lower rate Ka. We establish en-
tropy measurements for arrival time and deadline con-
straints as the basic forms of priority task allocation.

Theorem 6 (Maximum arrival entropy). Let fA(t)
be the density of the arrival time of a task, it satisfies
the following constraints:

1.
∫ ∞
0 fA(t) dt = 1,

2.
∫ ∞
0 t · fA(t) dt = Kaλ,

3. H(At) = − ∫ ∞
0 fA(t) ln fA(t) dt.

Then the maximum entropy for the function fA(t),
with pre-specified first moment in [0,∞); also de-
noted by HA,i, is given by

H(At) = ln(Kaλ) + 1. (11)

Proof: In a probabilistic sense, the arrival time den-
sity function fA(t) is an exponential type function, [8]
and [9]. Using the method of Lagrange multipliers,
the density distribution that satisfies the constraints 1,
2 and 3, is the one described in theorem 6.

∂

∂f
(−fA ln fA) + μ

∂

∂fA
(fA) + λ

∂

∂f
(t · fA) = 0.

The associated maximal entropy is then obtained
by,

H(At) =

= −
∫ ∞

0

1
Kaλ

e−t/(Kaλ) ln
1

Kaλ
e−t/(Kaλ) dt

= ln(Kaλ)
∫ ∞

0

1
Kaλ

e−t/(Kaλ) dt

+
1

Kaλ

∫ ∞

0

t

Kaλ
e−t/(Kaλ) dt.

Integrating

H(At) = ln(Kaλ) + 1.

Theorem 7 (Maximum task deadline entropy). Let
fD(t) be the density function of the deadline time of a
task satisfying the following constraints:

1.
∫ ∞
0 fD(t) dt = 1,

2. fD(t) =
∫ x
0 fA(t) fA(x − t) dt,

3. H(Dt) = − ∫ ∞
0 fD(t) ln fD(t) dt.

The maximum entropy for fD(t) variable with pre-
specified first moment in [0,∞) is HD,i given by

H(Dt) = γ + ln (Kaλ) + 1. (12)

Proof: The density function of the deadline time vari-
able is calculated by the convolution between the pre-
vious and next task arrival time density functions; i.e.

fD(t) =
∫ x

0
fA(t) fA(x − t) dt.

Thus, the density distribution that satisfies the con-
straints 1 and 2, is the one described in theorem 7.
The associated maximal entropy is then obtained by

H(Dt) = −
∫ ∞

0
fD(t) ln fD(t) dt.

This yields

H(Dt) = γ + lnKaλ + 1.
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5 Priority Task Allocation

In previous sections we establish a probabilistic
criteria for task classification in dynamic algorithms
according to based on tasks temporal constraints. As
seen in the investigations in this area, periodicity and
deadline constraints have been considered bases on
task planning algorithms.

A main task property is the period. In Liu and
Lyland pioneer analysis, [10], the length of successive
tasks is a constant called period p. A periodic task is
said to have a regular release time, or it is regular time
triggered. If a task does not occur with this criterion
is called a nonperiodic or a sporadic task. Task peri-
odicity plays a relevant role in scheduling algorithms
because of the assumptions considered in its analysis;
in order to have the expected results [6]. Periodicity
is considered as a measurement of task order timely
speaking. A higher hierarchy task corresponds to a
higher periodicity task, which is defined by the task
arrival distribution function.

Deadline property is considered in dynamic
scheduling as(in) the EDF algorithm [16]. By means
of the processor utilization factor, task priority is se-
lected by the absolute deadline. Tasks with earlier
deadlines will have higher priorities.

Definition 8 (Hierarchy in Probabilistic Sense).
Let Ji = J(τi) be the task parameter assigned that
describes the relative importance among tasks in the
system,

max{Ji} =
{

min{HA,i}
min{HD,i} (13)

where, HM,i will be the maximum entropy pol-
icy of density function fi, calculated from: the arrival
time fA(t), or deadline fD(t) functions.

Theorem 9 (Tasks Hierarchy based on Maximum
Entropy). Let τi be a task process with arrival time
fA,i(t), fC,i(t) and fD,i(t). Task hierarchy of Ji re-
spect to Jj according with the maximum entropy prin-
ciple is established by

Ji > Jj if and only if HM,i < HM,j . (14)

Proof: Results of theorems 6 and 7 relate the maxi-
mum entropy measurement with the distribution den-
sity mean for the task parameters under consideration.
According to the inequality HM,i < HM,j , hierarchy
gives the inequality Ji > Jj .

6 Simulation Results

Assigning hierarchy to task processes is a first
step in task planning due to the relevance of classi-
fying tasks in dynamic scheduling algorithms. That

is, while tasks arrive and we have enough information
about their probabilistic parameters, we are able to
distinguish those tasks that must be served first from
the others.

In this work a simulation algorithm for task clas-
sification, using the maximum entropy principle, is
presented. Here we take tasks arriving time samples
from which we observed their statistical parameters
during the simulation time. With the first probability
moment values we applied task classification based on
maximum entropy principle in order to give them a
relative hierarchy giving an order of tasks to be pro-
cessed by the server.

In figure 1, a simulation outcome is showed.
Here, the simulation algorithm is tested for three tasks
with different first probability moments in which ar-
riving task density distributions are stationary. More-
over, the tasks classification is presented for these task
samples giving them a priority value in function of
maximum entropy certainness measurement.

Figure 1. A tasks allocation priority simula-
tion outcome

We observe from the tasks hierarchy values for
figure 1, that, while the simulation time evolves, these
values remain unchanged because of the information
gathered from tasks.

7 Summary and Conclusions

In this paper the priority rule problem for task
planning is analyzed. Assigning priority to tasks
based upon the maximum entropy principle let us deal

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007      275



with tasks with differences in their statistical parame-
ters. A remarkable result of this work is the priority
allocation method, in relation with tasks periodicity
and deadline constraints in a similar manner.

Based on the maximum entropy level as an ele-
ment of differentiation among tasks, this theory gives
a continuous analysis in task planning processes. We
have modeled soft real-time systems as tasks pro-
cesses with stationary distribution functions. This
analysis establishes the basis for scheduling algo-
rithms in future works.
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