
Test Pattern Dependent Neural Network Systems for  

Guided Waves Damage Identification in Beams  
 

C. K. LIEW, M. VEIDT 

Division of Mechanical Engineering 

University of Queensland 

Brisbane, Qld 4072 

AUSTRALIA 

c.liew@uq.edu.au    m.veidt@uq.edu.au 
 

 

Abstract: - In regression neural networks for pattern recognition, a trained network may often produce large 

errors when identifying a test pattern not found in the training set. This is especially true when test patterns 

and training patterns are obtained from two different sources, as in the case from measured and simulated data. 

Therefore, this paper investigates a new neural network procedure where progressive training is performed in a 

series network with the implementation of a weight-range selection (WRS) technique that depends on the test 

pattern. An integer states rejection (ISR) criterion is also introduced to monitor and select the final network 

outputs. The WRS and ISR methods are applied for a supervised multi-layer perceptron operating with one 

hidden layer of neurons and trained using a backpropagation algorithm. An example of this system has been 

designed for damage identification in beams investigated with guided waves for structural health monitoring. 
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1   Introduction 
Structural health monitoring is a field that aims to 

evaluate the integrity and safety of structures mainly 

for aerospace, civil and marine applications. The 

advent of advanced sensor technologies, accurate 

measuring instruments and the optimization in 

signal processing techniques [1] has motivated this 

area of research significantly to develop practical 

solutions to quantify damages in structures. One 

such technology that has gained much interest in the 

recent years is guided waves. Guided waves, an 

ultrasonics application, are highly sensitive in 

detecting discontinuities in its path of propagation 

[2]. However, identifying damages from the 

measured transient wave response alone can prove 

difficult when a reasonably large damage parameter 

space is considered. Signal processing thus becomes 

an essential intermediate procedure in guided waves 

damage identification, leading to the application of 

pattern recognition with neural networks. 

     Pattern recognition with regression neural 

networks has been recently developed for guided 

waves signals to quantify damages in beams [3] and 

in plates [4]. These systems require the simulation of 

patterns with known damage parameters for the 

supervised neural network training. Simulations of 

wave responses from the given damage parameters 

can be derived from considerations of the reflection 

and transmission coefficients at the damage 

boundaries [5] or by finite-element methods [6].  

     Although these simulations predict the wave 

response with adequate accuracy, there are some 

areas where experimental measurements can differ 

by small extents. These minor differences are 

sufficient to cause networks trained with simulated 

patterns to encounter difficulties in identifying 

experimental patterns. Examples of discrepancies 

can originate from noise, pulse interference, mode 

coupling, dispersion and additional wave modes, all 

of which are difficult to predict and hence, not easy 

to reproduce in simulation. The occurrences of most 

of these effects are case-specific, thus motivating the 

research of neural network training that depends on 

the test pattern being identified.  

 

 

2 Weight-Range Selection (WRS) via 

a Series Network 
The concept of a test pattern dependent neural 

network is possible by joining a few neural networks 

in series. The test outcome from a neural network 

can then be used to limit the parameter space for 

training the subsequent network. The weight-range 

selection (WRS) is proposed to fulfill this purpose to 

bridge between the networks in series. 

 

2.1 Methodology 
The initial iteration, I0, of the neural network is 

supervised through a training set of input-target 

pairs and if necessary, may include regularization or 
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validation with early stopping [7]. The trained 

network is then used to identify the test pattern. The 

test result is taken only as a sample, as it does not 

constitute a conclusive generalization of the network 

due to the random initialization of weights. 

     The random initialization of weights is a property 

of neural networks that results in no unique solution 

[8]. Training only ensures that for any random initial 

weights, the function approximated at the end of 

training gives minimum error with respect to the 

training set. Even when minimum error is achieved 

after training for a particular set of initial weights, 

the trained network might not necessarily give good 

generalization for the test pattern being identified. It 

is essential then to conduct a reasonable number of 

trials for training different random initial weights to 

obtain a quantitative measure of the quality of 

generalization. Identifying the test pattern can then 

be based on outputs averaged over all the trained 

neural networks from the trials. The content of the 

training set can also influence the neural network 

outputs, which have led to research in network 

ensembles applying methods like bagging and 

boosting [9]. These methods can complement WRS 

and is a subject of further research. In WRS, the 

training patterns are maintained when collecting 

samples from random initial weights but are 

changed in the next iteration when the training range 

size is reduced. 

     The WRS technique reduces the size of the 

output parameter space by statistical analysis of the 

sample results from the trials. Training data for the 

next neural processing in the series is then selected 

randomly within the new parameter space. Since the 

number of training patterns is to be kept constant 

throughout the series network, the WRS technique is 

only suitable for neural network problems with the 

availability of large data sets or data generation. 

Subsequently, initial weights are restricted to only 

those that allow the trained network to produce test 

pattern identification results within the parameter 

space. Results that fall outside the parameter space 

are from extrapolation, which are generally 

unreliable [10]. This procedure thus filters out poor 

initial weights and removes the unreliable results 

they produce from being considered as a sample. 

     Collecting a specified number of samples, K, 

marks the end of the iteration of a network in the 

series. The samples are then used in the next 

iteration for statistical analysis, and the cycle repeats 

until the maximum number of iterations, Imax, is 

achieved or other termination conditions are 

fulfilled. A flowchart describing the application of 

the WRS technique in a series network is illustrated 

in Figure 1. This flowchart accommodates training 

with validation where validation patterns are also 

obtained within the training range. The statistical 

analysis of the samples is detailed in the next 

subsection while a termination point by a rejection 

threshold, seen in the figure, originates from a final 

outputs selection criterion described in section 3. 

Regardless of the termination point, the final outputs 

via WRS are the product of learning from a training 

set that is determined from results for the test pattern 

that is being identified in the first place. This creates 

a case-specific neural network that uniquely 

identifies only the test pattern that it depends on, 

naturally turning into a symbiotic system.  

     The rationale of reducing the size of the training 

range within the statistical boundaries of the test 

pattern identification results lies in the likelihood of 

improving generalization, which can be described by 

underfitting and overfitting [7]. Underfitting can be 

minimized, as the function approximated by the 

neural network for smaller parameter spaces is less 

complicated without the need to consider trends of 

patterns outside the space, thus promoting greater 

accuracy. Overfitting can also be minimized because 

in a smaller parameter space with the same number 

of patterns, the amount of interpolations required for 

regression can be reduced. However, it is important 

to note that ultimately, the quality of generalization 

depends on the mapping between inputs and targets, 

and the sensitivity of that mapping with respect to 

the test patterns. 

 

2.2 Statistical Analysis 
The statistical analysis performed on K samples of 

output results, O, extracts the mean output, <O>, 

and the standard deviation, σ. These statistical 
properties are used to calculate the limits of the 

training range for data generation, [ll,ul], and the 

limits of the range to accept O, [LL,UL]. Two types 

of limits are required because [ll,ul] is not equal to 

[LL,UL] when the actual solution is located close to 

the boundaries of the parameter space. In these 

cases, LL or UL is then allowed to fall outside the 

current parameter space to sustain a balanced spread 

of the sample results for the correct calculation of 

the mean. Extrapolation in this case is thus permitted 

and the results produced outside the training range 

are considered reliable.  

     The expressions and conditions that govern both 

limits for the ith iteration are given in Equations 1 

and 2. n is a constant that denotes the number of 

standard deviations. 
  

     [ , ] [< >  , < > ]   ; 0i i i i i iLL UL O n O n iσ σ= − + ≠    

                                                                             (1) 
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Fig. 1 Flowchart shows the process of the weight-range selection (WRS) technique in a series network. 
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     Selection of n in Equation 1 can be based on 

sample distribution of past results for known output 

parameters of similar neural network tests or the 

confidence level desired for the new range. More 

confident ranges can be achieved by choosing a 

larger n value. However, n is inversely related to the 

range reduction rate and it is thus not recommended 

to go beyond 2 σ’s, otherwise the range converges 
too slowly to the parameters identified, causing the 

need for many iterations of the series network and 

an impractically long processing time. 

     Equation 1 shows the application of simple 

statistical calculations to determine the limits of the 

new parameter space while reducing the size of the 

training range. This equation can be modified or 

replaced with more favourable expressions based on 

statistics or other mathematical concepts that can 

better represent the distribution of the samples. 
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3 Integer States Rejection (ISR)  

Criterion 
With the application of Equation 1, the parameter 

space reduces in size with iterations in the series 

network. When the parameter space becomes too 

small, it is possible for the actual solution to fall 

outside the training range. Pattern recognition in 

subsequent networks in the series then becomes an 

extrapolation and this may cause poor generalization 

in the neural network. A proposed approach to 

prevent such occurrences is the integer states 

rejection (ISR) criterion. 

     Integer state is a term adopted from MATLAB
®
, 

which is used by its random number generator [11] 

to initialize all the weights in the network. These 

integer states provide an efficient way to track and 

reproduce the network weights for consistent 

evaluation of neural network performance. The ISR 

criterion takes advantage of this property to monitor 

the number of rejected samples. A sample is rejected 

when network weights initialized by an integer state 

are trained and yield output results that fall outside 

the accepted range, [LL,UL], of the current network 

iteration. Integer states that produce accepted 

samples can be stored and be used to repeat a good 

training run. 

     The ISR criterion can also be useful in stopping 

the iterative process of the series network and in 

selecting the final output predictions. A rejection 

threshold, R, can be set to achieve this, as shown in 

Figure 1. If the number of rejections exceeds R, the 

series network is halted. Consequently, the current 

iteration is considered unfit for pattern recognition 

and hence, test results from the previous iteration are 

taken into account as the final network prediction. 

     The R value can be selected based on rejection 

trends observed in past results from similar neural 

network tests for known output parameters. 

However, if this history is not available, then 

Equation 3 can be applied, where K is the number of 

trials or samples required. This expression is 

considered valid since for R exceeding K, the bulk 

of the sample distribution no longer supports the 

trained network for pattern recognition. 

 

          R K≤     (3) 

 

 

4 Pattern Recognition for a Guided 

Waves Application 
The pattern recognition system implementing the 

WRS technique and the ISR criterion was integrated 

into a damage identification tool for a guided waves 

application. The application selected was the 

identification of thin damages in beams, which are 

elementary members in frames and trusses for many 

civil and aerospace structures.  

     Test patterns were obtained from measurements 

of the transient wave responses on beams fabricated 

with artificial damages. On the other hand, training 

patterns were generated from a simulation that was 

based on the fundamental principles of wave 

propagation, reflection and transmission. Both 

patterns were preprocessed using the discrete 

wavelet transform, improving correspondence 

between experimental and simulated patterns while 

reducing the neural network processing time. 

     A feedforward backpropagation neural network 

architecture was selected for the pattern recognition 

system. Neural network parameters like the hidden 

number of neurons and the training set size were 

then designed to optimize the damage identification 

performance.  

 
 
 

 
Fig. 2 Beam specimen with a fabricated full-width step damage, illustrating the point of measurement and the region of 

investigation. Pulse Excitation inset shows the 8-cycle 80kHz Hanning windowed tone burst pulse as the interrogating 

wave while the Damage Model inset shows the inhomogeneity model for simulating training patterns. 
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4.1 Experiment 
Aluminium beam specimens of 2 metres in length 

with rectangular cross-sections 12mm × 6mm were 

considered, as depicted in Figure 2. A longitudinal 

Pz27 piezoceramic transducer was adhesively 

bonded to one end of the beam to excite an 

interrogating wave pulse. The transducer was wired 

to a function generator to produce an 8-cycle 80kHz 

Hanning windowed tone burst pulse excitation. An 

amplifier was connected between the function 

generator and the transducer to increase the 

amplitude of the signal. Additionally, for a better 

signal-to-noise ratio response, a brass backing mass 

was bonded to the transducer with epoxy adhesive. 

A Polytec OFV 303/OFV 3001 laser vibrometer 

system [2] was used to measure the transient wave 

response at the centre of the 6mm thickness surface 

of the beam. Measurements were collected at 

500mm from the transducer end to ensure that there 

was minimum pulse interference in the signal. Out-

of-plane displacement was measured against time, 

which was displayed on a digital oscilloscope and 

saved on a personal computer.   

     On each beam, a full-width step damage was 

machined in a region of investigation located at the 

centre of the beam. This 500mm long region was 

taken as the original damage parameter space. Three 

beams with fabricated damages, labeled as T1, T2 

and T3, were prepared for experiments. The three 

full-width step damages are described in Table 1. As 

tabulated, three damage parameters would be 

identified by pattern recognition. Note that DCP was 

measured from the transducer end. 
 

Table 1 Damage parameters fabricated on 3 test beams. 

 

4.2 Simulation 
The arrival times of wave pulses at the point of 

measurement were approximated from the 

longitudinal wave velocity, c, which was measured 

to travel at 4750m/s. At the damage region, the 

wave was split into reflected and transmitted waves 

[12]. To quantify the proportion of reflection and 

transmission, the damage region was modeled as an 

inhomogeneity [5], as shown in the Damage Model 

inset in Figure 2. The inhomogeneity was the same 

in length as the damage but had different acoustic 

wave impedance, Z, compared to the aluminium 

beam. Z is a material property, as defined in 

Equation 4 where ρ is the material density, c is the 

wave velocity, and A is the cross-sectional area. 

 

       Z c Aρ=     (4) 

 

     For the step damage, there was a change in Z due 

to a change in A, which was a function of the beam 

thickness. Reflection and transmission coefficients 

at the boundaries of the damage region, CR and CT 

respectively, can thus be derived from Equation 5. 

 

     2 1 2

1 2 1 2

2
 ,  R T

Z Z Z
C C

Z Z Z Z

−
= =

+ +
   (5) 

 

     With c, CR and CT known, signals of the transient 

wave response at the point of measurement for 

different damage parameters could then be 

generated by simulation. The parameter space and 

the level of accuracy for the damage parameters are 

shown in Table 2. Training data was simulated 

within these parameter spaces and accuracies.   

Table 2 Damage parameter properties for simulation. 

 

4.3 Experimental and Simulated Signals  
The transient wave response signals captured on the 

oscilloscope at the point of measurement for the 

three test beams are given in Figures 3(a). Low 

noise levels were achieved in the experimental 

signals, thus the laser vibrometer was concluded to 

be an excellent measuring instrument for guided 

waves. The equivalent signals simulated are also 

plotted in the corresponding figures. Both signals 

were normalized by the amplitude of the incident 

wave. A reasonably good match with respect to 

pulse amplitudes and pulse arrival times was 

observed between experimental and simulated 

signals for all three test beams.  

     Signals in the 100µs-940µs range had been 

selected as neural network input patterns because 

this period was rich with information regarding the 

damage. Wave response beyond this range was not 

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007      71



considered due to the presence of severe attenuation 

and dispersion [12], which were features not 

included in the simulation. The range spanned from 

the incident wave to the first transmitted wave. The 

first transmitted wave was defined for a pulse that 

had traveled past the damage, reflected from the free 

end of the beam, and transmitted again through the 

damage before being collected at the point of 

measurement. 

     Four main pulses can be observed in all three 

experimental or simulated signals. The first and last 

large amplitude pulses are the incident and first 

transmitted waves respectively. The two other pulses 

in between are the first reflected wave from the 

damage followed by its reflection from the beam 

transducer end.  

     The first reflected wave for T1 had a different 

waveform because the length of its damage was long 

enough to cause a clear separation between the 

waves reflected from the two ends of the damage. 

For T3, a fifth pulse was observed at the end of the 

signal, interfering the first transmitted wave. This 

pulse was the second reflection of the first reflected 

wave from the damage. The arrival times of all the 

pulses could be easily checked from simple 

calculations with the known wave velocity and the 

distance traveled along the beam. 

     Although the arrival times and pulse amplitudes 

matched reasonably well between experimental and 

simulated signals, there were substantial differences 

in the phase. The discrepancies in the phase were 

attributed to complex dispersive behaviours of 

waves propagating in rectangular beams [13]. These 

properties could only be approximated with limited 

accuracies through elaborate numerical methods 

[14] and hence, were not included in the simulation.  

     Another feature not found in the simulated signal 

was a small tailing pulse after the incident wave, 

which was present in the experimental signals of T1 

and T3. The additional pulse was the result of a 

flexural mode excited at the transducer-beam 

interface. Since the presence and magnitude of this 

flexural mode was random, this effect was also 

excluded in the simulation.  
 

 

 
Fig. 3 Experimental and simulated signals with corresponding preprocessed wavelet patterns for the three test beams. 
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4.4 Wavelet Transform Preprocessing 
Discrepancies in the phase and the presence of the 

flexural mode could lead to errors in pattern 

recognition. Hence, preprocessing was proposed to 

minimize these effects and to extract only important 

features from the signals. The discrete wavelet 

transform was applied, which decomposed the signal 

by reducing the number of sampling points through 

a wavelet derived filter bank in dyadic scales [3].  

     The absolute signals were transformed to produce 

wavelet patterns, as shown in Figure 3(b). These 

wavelet patterns were the result of 5 levels of 

decomposition with the 8th order Daubechies 

wavelet. Essential features that described the 

damage like the pulse arrival times, magnitudes and 

widths, were preserved in the wavelet patterns. 

     The number of points in the pattern was also 

reduced from 841 points at a sampling rate of 1MHz 

to 28 points. The shorter wavelet pattern thus 

provided an additional advantage in faster 

processing times when learning the simulated 

patterns during neural network training. 

 

4.5 Neural Network Architecture and Design 
The multi-layer perceptron with a single hidden 

layer of neurons [7] was the selected neural network 

architecture for pattern recognition. This neural 

network contained a hyperbolic sigmoid activation 

function, F, to account for nonlinear regression. The 

governing function is given in Equation 6 where I is 

the input, O is the output, M is the total neurons, W 

is the weight, and B is the bias. U = 28 for the total 

points in the input pattern while v = 1, 2 or 3 for the 

three damage parameters identified. 

 

, ,

1 1

F
M U

v v m m u u m v

m u

O W W I B B
= =

 
= + + 

 
∑ ∑   (6) 

 

     Training was supervised with weights and biases 

adjusted via a resilient backpropagation algorithm 

[15] by minimizing the mean square error between 

outputs and targets. The three damage parameters 

were scaled in the range [-1,1] for training due to the 

difference in orders of magnitude. Validation with 

early stopping [7] was applied during training to 

improve generalization. The size of the validation 

set was taken as half that of the training set. 

     A systematic approach [16] was adopted to 

design the optimum number of neurons in the 

hidden layer and the size of the training set. The 

designed parameters are summarized in Table 3. The 

same architecture and design was maintained 

throughout the series network for consistency 

assuming that a network that worked well for a 

training range would work equally well for a subset 

of the range.       

Table 3 The designed neural network parameters. 

 

 

5 Results and Discussion 
28-10-3 neural networks were formed in a series and 

were run in MATLAB
®
 for all three test cases, 

based on WRS described in Figure 1. Imax = 3 

because beyond this, there would be a high chance 

for the actual damage parameters to fall outside the 

training range, especially for DD and DL with small 

original parameter spaces. K = 50 was selected to 

obtain an adequate number of samples to represent 

the distribution of the results while R = 50 provided 

the maximum allowance in rejections, according to 

Equation 3. Test results from each iteration are 

shown and discussed in the following subsections.   

 

5.1  Potential of the WRS Technique 
An example of errors from 50 samples collected in 

I0 for the same training set is shown in Figure 4. For 

comparison, errors from both the experimental and 

the equivalent simulated test patterns for the same 

initial weights as per sample were plotted. Although 

test patterns matched reasonably well, as seen in 

Figure 3(b), there was significant difference in 

pattern recognition results. The mean from the 

experimental samples, referred as the Average Bias, 

also reported worse results compared to simulation.   

 

 
Fig. 4 Sample error results for DCP of T3 in I0. 

 

 

     There were many experimental samples that 

yielded predictions equal or better in quality 

compared to simulation, for example in sample 

numbers 2, 3, 7, 10, 11, 17, 25, 33 and 44, which 

constituted 18% of the total samples. On the other 

hand, there were 21 or 42% of the samples that had 

errors less than 100mm or 10% of the original DCP 
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parameter space size. Summarized results for other 

damage parameters and test beams are provided in 

Table 4. The table shows that the number of quality 

samples was quite consistent across the test beams 

for each damage parameter. However, the numbers 

dropped by around 50% from DCP to DD to DL. 

This indicated the order in the level of difficulty in 

recognizing these parameters, which was dependent 

on the quality of the mapping between pattern inputs 

and the respective damage parameters. Overall, 

these observations showed the essence of selecting 

initial network weights for more accurate results.    

Table 4 Observed quality samples during I0 with errors 

below 10% the damage parameter space size. 

 

     The actual damage parameters were observed to 

be within the ±1 σ of the experimental sample 

results. This was also found to be true for other 

damage parameters and test beams. Hence, from 

Equation 1, n = 1 was selected to allow training 

range reduction for subsequent neural network 

processing for improved generalization with WRS.  

         

5.2 Performance of the WRS Technique with 

the ISR Criterion  
The damage identification results for the individual 

iterations are plotted as histograms in Figure 5. The 

series network was deliberately run up to Imax = 3 

even if R was exceeded to examine the functionality 

of the ISR criterion. The arrows in the figure point 

to results that were selected based on ISR. 

Percentages shown refer to the improvement in 

results selected when compared to results from I0, 

which were then normalized by the respective 

original parameter space or training range sizes from 

Table 2. The formula to calculate the percentage is 

given in Equation 7 where the terms e0 and eISR are 

the absolute average biases from I0 and from the ISR 

selected output respectively. 

 

          0 ISR

0 0

Improvement
*100%

with WRS + ISR

e e

UL LL

−
=

−
  (7) 

 

     The accuracy of the results generally fluctuated 

among the iterations. This was due to prediction 

tolerance common in neural networks [7], mainly 

caused by changes in the training patterns and 

random initial weights, which are part of the 

processes in the series network. The tolerance level 

was relatively high for DD of T1 due to the 

difficulty in recognizing this parameter from the 

small reflected pulse amplitudes in the pattern that 

described the damage, as seen in Figure 3(i).  

     The WRS technique only provided benefit for 

test cases where the damage was poorly recognized 

initially, as evident in DCP and DD of T3, and in 

DL of T1 and T2. DCP of T3 achieved the best 

improvement at around 14%. Once the identified 

parameter was within the tolerance range of its best 

perceived prediction, significant improvements 

would not be achieved in subsequent iterations but 

instead, fluctuations would result and potentially 

worse results could be obtained like in DD of T1.         
 

 
 

Fig. 5 Damage identification results for a series network 

applied with the WRS technique and the ISR criterion. 
 

 

     The main objective of the ISR criterion was to 

select a result before the actual damage parameter 

fell outside of the training range, as marked by a 

cross in Figure 5. Only one such case was observed, 

DL of T1, where the criterion had performed well to 

select a result before extrapolation was required for 
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pattern recognition. For DD and DL, the majority of 

the selections were made before Imax, indicating high 

rejections in early iterations. This was caused by 

small original training ranges and the difficulty in 

identifying these parameters from the patterns, 

yielding possibly large tolerances. Further iterations 

could be run for test cases where R had not been 

exceeded but more likely than not, these cases had 

already arrived within the tolerance range of the best 

perceived predictions. Negative improvement was 

obtained for DD of T1 based on ISR but this cannot 

constitute a failure of the criterion because the aim 

of ISR was not to pick the most accurate prediction 

among iterations. However, the ability for ISR to 

select the best results among the iterations for more 

than half the test cases suggested that there might be 

a correlation between R and prediction accuracy, 

which requires further investigations.  

  

 

6 Conclusion 
Test pattern dependency in WRS is an interesting 

concept that shows promising potentials for 

improving the performance of regression neural 

networks. This method is specifically designed for 

pattern recognition problems that contain relatively 

high uncertainties in predictions among samples 

with random initial weights. One practical example 

of an application is damage identification in beams 

using guided waves with simulated training patterns 

and experimental test patterns where WRS trained 

series network and ISR selected results could yield 

up to 14% improvement in prediction accuracies.  

     The WRS technique is also a flexible module that 

can complement other training methods, for example 

in bagging or boosting. The technique also 

encourages further development to improve its 

effectiveness in retrieving the most accurate 

predictions. Statistical analysis of the samples to 

determine the limits for parameter space reduction, 

output results selection criterion, and correlation 

between ISR and prediction accuracy are examples 

of possible areas for further studies.   
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