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Abstract: Scope of the work is the decision of a high accuracy experimental data reception problem in medical, 
ecological and chemical data processing software. Using complex schemes of filtering improves reception of 
experimental data with high reliability. Approach of data acquisition about random parameter with a required degree 
of reliability is investigated. The approach is used for control of experimental stochastic parameter on the basis of 
the found interval estimations regression dependences [1,2].  
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1   Introduction 
Alongside with systems, which properties can be 
specified by active experiment, there are systems 
accepting only possibility of passive overseeing by 
variables of their states. On the basis of the 
observational data about processes their current and 
prognosticated properties can be detected, that allows 
to accept adequate measures of counteraction to 
development of unsafe situations [2,3].  
     Main the requirement is the maximal reliability of 
situations distinguishing, and also lowering the 
probability of a unsafe situation. The problem of 
lowering the hazard includes both first and second 
requirements, which execution is reached by 
appropriate data processing of observations [2,3]. 
Thus one of the tasks of statistical estimation is 
solved. 
     For improvement the estimations accuracy of 
observable parameters it is possible to utilize two 
approaches: 
• rise of accuracy by usage of more precise sensors; 
• using the complex schemes in control systems with 
standard accuracy sensors. 
     The first approach has set of objective 
implementation difficulties. The second approach 
bases on usage of standard sensors and 
implementation (program or hardware) algorithm of 
processing. It requires only knowledge of structure 
and numerical characteristics of instrumental error of 
sensors, collection of the external factors influential 
on instrumentation indications. Thus the potential 
accuracy of estimations is reached using complex 
scheme in control systems [12, 15]. 
 
 
2   The Problem Statement  
2.1 Main Assumptions   

In composition of elementary complex scheme is two 
measuring systems – data sources about the 
parameter N. These sources produce the parameter N 
with errors 1∆  and 2∆  accordingly. The signal of 
measurements on a filter, is formed as a differential 
signal 21 ∆−∆ , which does not contain N. Kalman 
filter formed in view of statistical properties of errors 

1∆ , 2∆  and implemented in a computing system, 
using measurements, produces optimal estimations of 
a vector of a system condition, of which units the   
optimal estimations of separate errors are formed. 
     Consider main first meter, forming the parameter 
N with a resultant error equal error of an optimal 
estimation 11 ∆̂−∆  [5]. 

     The problem is to minimize the function 11 ∆̂−∆ .  
 

 
Fig.1: Complex filtering scheme with two 

experimental data sources 
 
 

2.2 Proposed Method  
Let's consider more operation of Kalman filter in 
complex scheme of control system and write its 
equation. Let measuring system intended for forming 
of the parameter N, will use in it 2 independent 
sources, which output parameters (Fig. 1): 
 )()()( 11 ttNtY ∆+=     (1) 

)()()( 22 ttNtY ∆+=  
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     Consider that structure of measurement errors like 
the following:   

)()( 1101 ttddt ε+⋅+=∆     (2) 

)()( 22 tct ε+=∆ , 
where d0 – component of an error of the first source 
using an initial parameter error; d1 - linearly varying 
component of an error of the first source; d0, d1 – 
components of errors characterized by dispersions 

2
0)(σ , 2

1)(σ  and zero average of distribution; 

)(1 tε  – stochastic process with zero average of 
distribution and correlation function:  
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c –  component of an error of the second source with 

a dispersion 2
2 )(σ  and zero average of distribution;  

)(2 tε  – Stochastic  process with zero expectation 
and correlation function:  
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System state vector:  

 , x, x, x, x, xxx(t) 654321=  = 

cx, e, e, dx  , , 22111 .  

State vector components:  
x& = Fx + Gw,     (3) 

 
 

 

 
Covariance matrix for the system: 

 
 
 
3   Problem Solution 
Let the dynamics of dispersions changes and 
correlation moments is described by the following 
matrix covariance equation (Riccati equation): 

 Q  P  P T
1

T
1k ΓΓ+ΦΦ=+    (4)  

     General errors model for complex scheme: 
 G(t)w;   F(t)x  x +=&  

H(t)xy = ,     (5) 
where x – state vector (dimension (n × 1)); w –white 
noises vector (dimension (r × 1), having a matrix of 
intensity Q); y – system parameters errors vector 
(dimension (m × 1)); F, G , H – matrix of dimensions 
(n × n), (r × r), (m × m) (generally these matrixes 
depend on time). 
     This model generalizes different types of control 
systems with complex scheme, with two main. The 
first type systems concerned with the filters defined 
by transfer functions (or matrixes) with known 
parameters. In this using complex schemes with 
stationary filters, defined by operator form. Second 
type schemes have such model: 

   Gw Fx  x ,+=&  
v,Hxz +=  

xHy 0=      (6) 
satisfying to relations: 

  xHz K x F x ),ˆ(ˆˆ −+=&    (7) 
in the same denotations with (5), where v – 
measurement noises vector (dimension (m × 1), with 
intensity R); z – vector of filter input measurements 
(dimension (m × 1)); K – amplification coefficient 
matrix (dimension (n × m)). 
     Consider feasibilities of suboptimal Kalman filters 
and suboptimization of the second type complex 
scheme. Let's consider varieties reduced orders 
suboptimal filters. The reduced filters (RF), 
simplified filters (SF) and their stationary 
modifications concern to reduced orders suboptimal 
filters. As any stationary filters of sort 

   xHz K x F x ),ˆ(ˆˆ −+=& can be shown to 
appropriate transfer functions and matrixes on known 
relations  

K)] - (F - KH[pI HW(p) -
n

1
0= ,   (8) 

the main attention will be given non-stationary 
Kalman filters of types of RF and SF. The filters of 
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this sort have by common feature that they are 
intended for an estimation (n1 × 1) - subvector x1 of a 
state vector x of model (6). So the structure of a 
matrix K(t) of such filters has n2 =  n – n1 of zero 
rows. Admitting, that the estimated part of a vector x 
is posed in its top, the appropriate extended vector of 
Kalman filter estimations x̂ and matrix K* look like:  
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where, 1x , 1̂x  - vectors of dimension (n1 × 1); 2x  - 

vector of dimension (n2 × 1); 1K  - amplification 
coefficients matrix (with dimension (n1 × m)). 
     The analysis of accuracy and sensitivity of 
Kalman filter type (6) is grounded on obtaining 
covariance matrixes of estimations this error: 

xx
x
...

xx

x
...

e

 e ˆ
ˆ

2

11

2

1

−=














 −

=















= .  (10) 

Covariance matrixes, appropriate to this vector: 

 
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)  e M( eP T
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212112 == ;  (13) 

)  e M( eP T
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 has block structure. 
     At dimension of a matrix P (n × n) it means 
solution of n(n + 1)/2 equations due to symmetry of 
this matrix. 
     After obtaining matrixes 11P , 12P , 22P , in each 
instant, the covariance matrix of output variables y(t)  
is determined by standard method:  

T
y P(t)H H(t) P 00= .    (15)  

     One of suboptimal Kalman filter modifications is 
the approximated filter, in which model the 
amplification factors are approximated, forming a 
matrix of approximated amplification factors (t)K a . 
     Let's substitute approximated amplification 
factors ( (t)KK(t) a=  in a continuous function case, 

kak )(KK =  in a discrete function case) in the filter 
equation: 

TTT KRKGQGKHFPPKHFP ++−+−= )()(& , 

00 P)P( =  – continuous function.   (16) 
     Similar to errors for discrete function case 
( kkkk ESeP cov,cov == ): 

T
kkk

T
kkkk KRKHKESHKEP +−−= )()( , (17) 

 G GQ F F S T
k

T
kk +=+ P1 ,  

00 P)P( = . 
     Considerable simplification of the equations P 
analysis, because of approximating of amplification 
factors matrixes. In this model Riccati equations are 
not written. 
 
 
4 Simulation Results: Convergence 

and Robustness 
The implementation of considered approach displays 
essential decrease of parameter estimation error. 
     Usage of the surveyed complex scheme in control 
systems using Kalman filters allows increasing 
accuracy of estimations. The error of estimation of 
the parameter decreases with time (Fig. 2).  
     Without application of a method there was an 
accumulation of instrumental error in closed-loop 
control systems. 

 
Fig.2: Convergence and robustness of 

complex Kalman filtering scheme in contrast with 
ordinary closed-loop control system (Matlab 

modeling: X-axis – time, Y-axis – relative error of 
parameter N estimation) 

 
5 Conclusion 
A very powerful method of using complex schemes 
in filtering control systems has following main 
advantages: 
• comparative simplicity of information processing; 
• sharp rise of estimations accuracy (on a short time 

interval); 
• low cost of high accuracy and function stability. 
     Although performance of complex schemes in 
closed-loop control systems with Kalman filtering 
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was best when we had knowledge of structure and 
numerical characteristics of instrumental error of 
sensors, this approach allows to provide increasing of 
estimation accuracy without replacement of sensors 
by more precise. Such schemes allow to apply 
scaling with major number of sensors. 
     I am looking forward to apply these methods in 
realizations in related areas like chemistry, medicine, 
and et cetera. 
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