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Abstract: This paper deals with a special type of asymptotic (exponential) stability namely componentwise asymptotic 
(exponential) stability for 1-D and 2-D linear discrete-time singular systems. The main motivation for these results is 
the need, particularly felt in the evaluation in a more detailed manner of the dynamical behaviour of 1-D and 2-D linear 
discrete-time singular systems. Necessary and sufficient conditions for componentwise asymptotic (exponential) 
stability are given. 
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NOTATIONS 
n

i )x(x ℜ∈=  (x a real vector); 
nxn

ij)h(H ℜ∈= ( H a real matrix); 

D Int  interior of set D 
Dδ  boundary of set D 

)Mdet(  determinant of matrix ; nxnCM∈
+H  matrix with component , i,j=1,2,..,n; )0,hsup(h ijij =

+

−H  matrix with components , i,j=1,2,..,n; )0,hsup(h ijij −=−

H  matrix with components ijh , i,j=1,2,..,n, 

+x  vector with components , i=1,..,n; )0,xsup(x ii =+

−x  vector with components , i=1,..,n; )0,xsup(x ii −=−

x, y vectors in ; nℜ
yx ≤  if , i=1,2,..,n; ii yx ≤
yx <  if , i=1,..,n. ii yx <

 
1. Introduction 
 
Componentwise stability of linear continuous systems 
with or without time delay has been studied by Hmamed 
(1996), Voicu (1984, 1987) and Hmamed and 
Benzaouia (1997). The purpose of this note is to extend 
the concept of Componentwise asymptotic (exponential) 
stability of 1-D and 2-D linear discrete-time systems  
 

 
 
(see Hmamed, 1997) to the componentwise stability of 
of 1-D and 2-D discrete-time singular systems. 
The paper is organized as follows. Section 2 deals with 
the main results, giving necessary and sufficient 
conditions for componentwise asymptotic (exponential) 
stability of 1D singular systems. This is then extended 
to the 2D singular Fornasini-Marchesini in Section 3. 
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  2. 1D discrete singular systems 
 
In this section, some results about componentwise 
asymptotic (exponential) stability of 1D singular 
systems are established. We focus on discrete-time 
singular systems, which are described by the implicit 
form 

⎩
⎨
⎧

=
=+

0x)0(x
)k(Ax)1k(Ex
,                             (1) 0k >

where  is the state vector, , 

, . 

nx ℜ∈ nxnE ℜ∈

nq)E(rank ≤= nxnA ℜ∈
In certain applications, namely in electrical engineering 
and biology, dynamical systems have to satisfy some 
additional constraints of the form 

nx ℜ⊂Ω∈                                     (2) 
where  is the set of admissible, states defined by Ω

{ }n
2112

n int)k( ),k( );k()k(x)k(/x +ℜ∈ρρρ≤≤ρ−ℜ∈=Ω        (3) 
with 

0)k(lim     ,0)k(lim 2
k

1
k

=ρ=ρ
+∞→+∞→

              (4) 

This is a variant nonsymmetrical polyhedral set, as is 
generally the case in practical situations. 
 In certain cases,  and  take the form )k(1ρ )k(2ρ

k
ss )k( βα=ρ                                (5) 

with  and  for s=1,2. 10 <β< 0s >α
The purpose of this section is to define a special type of 
asymptotic (exponential) stability of (1), namely the 
componentwise asymptotic (exponential) stability 
characterized by (3) and (4) ((3) and (5)). Necessary and 
sufficient conditions for componentwise asymptotic 
(exponential) stability of the system (1) are given. 
First, recall some important properties of implicit 
systems that are assumed intrinsic in the following 
analysis. 
Definition 2.1: The system (1) is called componentwise 
asymptotically stable with respect to 

 (CWAS ) if for every 
, the response of (1) satisfies 

[ ]TT
2

T
1 )k(  (k))k(~ ρρ=ρ ρ~

)0(x)0( 102 ρ≤≤ρ−
)k()k(x)k( 12 ρ≤≤ρ−  ,             (6) 0k ≥∀

 
Definition 2.2 The system (1) is called componentwise 
exponential asymptotically (CWEAS) if there exist 

 and  such that, for every 
, the response of (1) satisfies 

01 >α 02 >α

102 x α≤≤α−
k

1
k

2 )k(x βα≤≤βα−  ,             (7) 0k ≥∀
Definition 2.3 [Campbell et al., 1976]: The system (1) 
is said to be regular if . 0)AsEdet( ≠−

Definition 2.4 [Lewis, 1987]: The system (1) is said to 
be impulse-free if  

)E(rank)AsEdet(deg =−  or  is proper. 1)AsE( −−
Definition 2.5 [Chen, 1970] A rational function  
is said to be proper if  is constant matrix,  is 
said to be strictly proper if . 

)s(G
)(G ∞ )s(G

0)(G =∞
For the convenience of the later statements in this paper, 
we use the pair (E,A) to represent the system (1). 
Theorem 2.1 [Campbell, 1991] Suppose that (E,A) is 
regular. Then )k(f)k(Ax)1k(Ex +=+ , 0k ≥∀  is 
solvable and the general solution is given by: 

∑ ∑
−

=

−ν

=

−− +−−+=
1k

0i

1

0i

Di1ikDk )ik(f̂ÂE)PI()i(f̂AÊqPA)k(x (8) 

where )i(f1)AE()i(f̂ −−λ= , E1)AE(Ê −−λ= , 

, A)AE(Â 1−−λ= ÂÊA D= , DÂÊE = , 
DÊÊP = , , nq ℜ∈ ν  is the index of E  and ˆ λ  is a 

scalar such that AE −λ  is nonsingular. The projection 
A ,E and P , ν  are independent of . λ

Matrix  is the Drazin inverse of  and the index of 
a matrix is the size of the largest nilpotent block in its 
Jordan canonical form. 

DÊ Ê

 
We now give necessary and sufficient 

conditions for componentwise asymptotic (exponential) 
stability of the system (1). 

 
Theorem 2.2: Suppose that (E,A) is regular, a 
necessary and sufficient condition for the system (1) to 
be CWASρ~  is 

)k(~H~)1k(~ ρ≥+ρ ,               (9) 0k ≥∀
with 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +−

−+

HH
 H HH~ ,     [ ] TT

2
T
1  )k(  (k) )k(~ ρρ=ρ      (10) 

and  
ÂÊH D=                         (11) 

Proof: From Theorem 2.1 the solution of the system (1) 
is written in the form 

( ) ( ) 0
kDDkD  x ÂÊqÊÊ  ÂÊ)k(x ==   , 

 nq ℜ∈ 0k ≥∀
then: 

)k(xÂÊ)1k(x D=+              (12) 

with the initial condition ,  . qÊÊx D
0 =

nq ℜ∈
At this step, we can use the proof given in Hmamed 
(1997) as the proof remains unchanged. 
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Remark 1: From Campbell et al. (1976) and Lewis 
(1986), we know that the consistent initial conditions 

 of system (1) are defined by )0(xx0 =

0
D

0 xÊÊx =  

and then, there always exists a vector  such tha

 (Tarboureich et al. 1993). 

nq ℜ∈ t 

qÊÊx D
0 =

 
Remark 2:  In the case where matrix E is non-singula
then system (1) can be written as a classical autonomous 
linear system defined as 

r, 

)k(AxE)1k(x 1−=+           (13) 
Hence, if we apply the previous result to system (13), 
then the classical result of the componentwise stability 
of 1-D linear discrete-time systems is obtained, that is 

0k    )k(~H~)1k(~ ≥∀ρ≥+ρ  

with          . ( ) ( )
( ) ( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= +−

−+

−−

−−

AEAE
AEAEH~

11

11

For , we obtain the result given in [Hmamed, 
1997]. 

IE =

 In the symmetrical case )k()k(2)k(1 ρ=ρ=ρ , we 
can deduce the following result. 
 
Corollary 2.1: Suppose that (E,A) is regular , a 
necessary and sufficient condition for the system (1) to 
be CWAS  is ρ

0k   )k( H )1k( ≥∀ρ≥+ρ             (14) 
matrix H is defined by (11). 
Proof: By observing that −+ += HHH , the proof 
follows from Theorem 2.6. 
 
Using the techniques of Hmamed (1997), we can also 
extend the results of Theorem2.2 to the following 
Theorem which deals with the componentwise 
exponential asymptotic stability. 
 
Theorem 2.3: Suppose that (E,A) is regular , the system 
(1) (system (12)) is CWEAS if and only if one of the 
following conditions holds: 

i) ( ) 0~ H~I ≥α−β ;                                    (15) 
ii)

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

α

α
+

α

α
+

α

α
+

α

α
+

α

α
+

α

α
+≥β> ∑∑

≠

−+−+

≠

−+−+

ij
j
2

j
1

iji
2

j
2

iji
2

i
1

iiii
ij

j
1

j
2

iji
1

j
1

iji
1

i
2

iiii
i

,hhhh ,hhhhmaxmax1

  (16) 

with  and . [ ]TT
2

T
1

~ αα=α )h(ÂÊH ij
D ==

 

 In the symmetrical case , we can 
deduce the following result. 

k
21 )k()k( αβ=ρ=ρ

 
Corollary 2.3: The regular system (1) is CWEAS if and 
only if one of the following conditions holds: 

(i) α≥βα H ; 

(ii) 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

α

α

=
≥β> ∑ i

jn

1j
ijh

i
max1  

with  . )h(ÂÊH ij
D ==

Remark 3: When IE = , we obtain the result given by 
Hmamed (1997). 
 
2-D Fornasini- Marchesini model 
 
In this section, we extend the notion of componentwise 
asymptotic (exponential) stability to implicit 2-D 
Fornasini- Marchesini model described by: 
 

)j,1i(Bx)1j,i(Ax)1j,1i(Ex +++=++        (17) 
with the boundary conditions 

)0,i(x  and  for  i , j = 0,1,…              (18) )j,0(x

where  is the state vector. nx ℜ∈
 Assume then that (E,A) is a regular pencil and impulse-
free. A similar discussion applies if (E,B) is regular. 
Treat j as fixed, If the sequence  is considered 
known, then (17) is a difference equation 

)j,i(x

)]j,1i(Bx[)1j,i(Ax)1j,1i(Ex +++=++ ,   (19) 0i ≥
for )1j,i(x +  with the terms in square brackets known 
(see Campbell., 1991). 
Since (E,A) is a regular pencil, we may apply Theorem 
2.1, we have 

( ) ( )

)j,ri(xB̂Â)ÂÊ()ÊÊI(                                            

)j,1k(xB̂  ÂÊÊqDÊÊ  ÂDÊ)1j,i(x

DrD
1

0r

D

1i

0k

1kiDDi

+−

−++=+

∑

∑
−ν

=

−

=

−−

(20) 

here ν  is the index of   Ê

( ) ( )

)j,r1i(xB̂Â)ÂÊ()ÊÊI(                          

)j,1k(xB̂  ÂÊÊqDÊÊ  ÂDÊ)1j,1i(x

DrD
1

0r

D

i

0k

kiDD1i

++−

−++=++

∑

∑
−ν

=

=

−+
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( )( ) ( ) ( )

( ) )j,r1ki(xB̂Â)ÂÊ()ÊÊI()j,1i(xB̂DÊ       

)j,1k(xB̂  ÂÊÊÂDÊqDÊÊ  ÂDÊÂDÊ

DrD
1

0r

D

1i

0k

1kiDDi

+++−−+

+++=

∑

∑
−ν

=

−

=

−−

( )

( ) )j,r1ki(xB̂Â)ÂÊ()ÊÊI()j,1i(xB̂DÊ       

)j,ki(xB̂Â)ÂÊ()ÊÊI()1j,i(xÂDÊ

DrD
1

0r

D

DrD
1

0r

D

+++−−++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−++=

∑

∑
−ν

=

−ν

=

( ) ( )
( ) ))j,1ki(x)j,ki(xÂDÊ(B̂Â)ÂÊ()ÊÊI( 

)j,1i(xB̂DÊ)1j,i(xÂDÊ

DkD
1

0k

D ++−+−

++++=

∑
−ν

=

 

 

( ) ( )
)j,1ki(xB̂Â)ÂÊ()ÊÊI(      

)j,1i(xB̂DÊ)1j,i(xÂDÊ

DkD
1

0k

D ++−

−+++=

∑
−ν

=

 

Definition 3.1 : The regular system (17) is called 
componentwise asymptotically stable with respect to 

(CWAS ) if, for every [ TT
2

T
1 )j,i( )j,i()j,i(~ ρρ=ρ ] ρ~

⎩
⎨
⎧

ρ≤≤ρ−
ρ≤≤ρ−

)j,0()j,0(x)j,0(
)0,i()0,i(x)0,i(

12

12   for i,j=0,1,2,.            (21) 

The response of (17) satisfies 
)j,i()j,i(x)j,i( 12 ρ≤≤ρ−   )0,0()j,i( >∀        (22) 

where 
0)j,i(  ,0)j,i( 21 >ρ>ρ )0,0()j,i( >∀  

 
0)j,i(lim     ,  0)j,i(lim 1

2j or/and i
1

j or/and i
=ρ=ρ

→∞→∞→∞→∞
 

 
Definition 3.2 : The regular system (17) is called 
componentwise exponential asymptotically stable 
(CWEAS) if there exist  and  such that, 
for every 

01 >α 02 >α

⎪⎩

⎪
⎨
⎧

γα≤≤γα−
βα≤≤βα−

j
1

j
2

i
1

i
2

)j,0(x
)0,i(x   for i,j=0,1,2,…        (23) 

the response of (17) satisfies 
ii

1
ii

2 )j,i(x γβα≤≤γβα−  ,   )0,0()j,i( >∀
where  and 10 <β< 10 <γ< . 
 We give now necessary and sufficient conditions for 
componentwise asymptotic (exponential) stability of the 
system (29) or (17). 
 
Theorem 3.1: Suppose that (E,A) is regular and 
impulse-free, a necessary and sufficient condition for 
the system (17) to be CWASρ~  is 

)j,1i(~H~)1j,i(~H~)1j,1i(~
21 +ρ++ρ≥++ρ ,    (24) )0,0()j,i( >∀

with 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +−

−+

)ÂÊ()ÂÊ(
)ÂÊ()ÂÊ(H~ DD

DD
1 , , 

              (25) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +−

−+

)B̂Ê()B̂Ê(
)B̂Ê()B̂Ê(H~ DD

DD
2

[ TT
2

T
1 )j,i(   )j,i()j,i(~ ρρ=ρ ]
 

Proof: Since system (20) is impulse free, in this case, ν  
becomes 1 (Lewis, 1986). 
Express )1j,i(x +  by using (20) with 1=ν  as 

( ) ( )∑
−

=

−− ++=+
1i

0k

1kiDDDiD )j,1k(xB̂  ÂÊÊqÊÊ  ÂÊ)1j,i(x (26) 

then 
( )

( )∑
−

=

−−

+

+

+++=++
1i

0k

1kiDDD

DD1iD

)j,1k(xB̂ ÂÊ)ÂÊ(Ê               

)j,1i(xB̂ÊqÊÊ  ÂÊ)1j,1i(x

  (27) 

From the Drazin inverse theory used in [Campbell et al., 
(1976)], we know that 

ÊÂÂÊ =  , DD ÊÂÂÊ =  and DDDD ÊÂÂÊ =  
then 

)j,1i(x H)1j,i(x H)1j,1i(x 21 +++=++          (28) 
with  

ÂÊH D
1 = ,                                     (29) B̂ÊH D

2 =
and boundary conditions  and 

, , . 
0,ix)0,i(x =

qÊÊ)j,0(x D= nq ℜ∈ 1j ≥
At this step,  this follows similar lines to the proof of 
Theorem 3.3 in Hmamed (1997). 
Remark 4: The boundary values  may be taken 

arbitrary and the boundary values , 
are arbitrary (Campbell, 1991). Then, we can applied 
the results given in the last section, implying the 
existence of a vector  such that: 

)0,i(x
1j  ),j,0(xÊÊD ≥

nq ℜ∈

1j  ,xqÊÊ)j,0(x j,0
D ≥==  

By analogy with section 2, we give some definitions. 
 
Remark 5: If E is nonsingular square matrix, then 
equation (24) is the classical condition given in 
Hmamed (1997). 
 In the symmetrical case )j,i()j,i()j,i( 21 ρ=ρ=ρ , we 
can deduce the following result. 
 
Corollary 3.1. Suppose that (E,A) is regular and 
impulse-free, a necessary and sufficient condition for 
the system (17) to be CWAS  is ρ

)j,1i( H )1j,i( H )1j,1i( 21 +ρ++ρ≥++ρ   (30) 

matrices  and  are defined by (29). 1H 2H
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Proof:  On observing that −+ += 211 HHH  and 
−+ += 222 HHH , the proof follows from Theorem 3.1. 

Theorem 3.2. Suppose that (E,A) is regular and 
impulse-free, the system (17) (system (28)) is CWEAS 
if and only if one of the following conditions holds: 

i) αβ−γ≥αβγ ~)H~H~(~
21 ;             (31) 

ii)     (32) 

⎪⎭

⎪
⎬
⎫

αβ+γ+αβ+γ

⎪⎩

⎪
⎨
⎧

ααβ+γ+αβ+γ≥βγ>

∑

∑

=

++−−

=

−−++

n

1j

j
2

2
ij

1
ij

j
1

2
ij

1
ij

i
1

n

1j

j
2

2
ij

1
ij

j
1

2
ij

1
iji

/)]hh()hh([                                 

,/])hh()hh([maxmax1

with T
21 ]  [~ αα=α . 

 In the symmetrical case ji
21

~)j,i()j,i( γβα=ρ=ρ , we 
can deduce the following result. 
 
Corollary 3.3: Suppose that (E,A) is regular and 
impulse-free, the system (17) is CWEAS if and only one 
of the following conditions holds: 
(i) αβ+γ≥βγα )H H ( 21         (33) 

(ii)                       
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

α

α
β+γ≥βγ> ∑

=

n

1j
i

j
2
ij

1
ij ) h h(1       (34) 

matrices  and  are defined by (29). 1H 2H
Remark 6. We can extend the results of this section to 
the Roesser 2D model given in Kaczorek (1987), Lewis 
(1987-1992) by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

+

+
v
1,i

h
j,i

43

21
v

1j,i

h
j,1i

43

21

x

x
 

AA
AA

x

x
 

EE
EE

              (35) 

with the boundary conditions 

)0,i(x  and  )j,0(x vh    for i ,j = 0,1, 
Several techniques may be used to show that the 
implicit Roesser and implicit FM model are equivalent 
(Kacsorek, 1989). Indeed, in the Roesser model define 

⎥
⎦

⎤
⎢
⎣

⎡
=

0E
0E

F
2

1
1 ,                     (36) ⎥

⎦

⎤
⎢
⎣

⎡
=

4

3
2 E0

E0
F

and similar quantities with respect to . ⎥
⎦

⎤
⎢
⎣

⎡
=

43

21
AA
AA

A

Then (35) may be written as 
)j,i(Ax)1j,i(x F)j,1i(x F 21 =+++           (37) 

Consequently all the results derived in this section still 
hold for the Roesser model (35) on taking into account 
the relation (36). 
 Following the same ideas, those results can easily be 
extended to the following general 2D system model: 

)j,1i(xA)1j,i(xA)j,i(xA)1j,1i(Ex 210 ++++=++  (38) 

 
 

3. Conclusion 
 
In this paper, we have given an extension of the concept 
of componentwise asymptotic (exponential) stability for 
singular 1D and 2D discrete linear singular systems. 
Necessary and sufficient conditions for componentwise 
asymptotic (exponential) stability have been given. The 
results for the symmetrical case have been obtained as a 
particular case.  
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