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Abstract  
During fermentation processes of S. cerevisiae 2D spectrofluorometry produces a large volume of spectral data, 
which can be analyzed using chemometric methods such as principal component analysis (PCA) and partial least 
square regression (PLS). PCA resulted in scores and loadings that were visualized in the score-loading plots and 
used to monitor the fermentation processes on-line. PLS was used to examine the correlation between the 2D 
fluorescence spectra and the process variables.  
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1   Introduction 

A 2D spectrofluorometer has received 
considerable attention for the non-invasive 
monitoring and control of various biological 
processes among many spectroscopic methods. For 
example, it has been used to monitor the 
concentrations of the cell mass in Saccharomyces 
cerevisiae fermentations [1] and the level of the 
antibiotic polymyxin B production in Bacillus 
polymyxa cultivations [2].  
The 2D spectrofluorometer allows many 

combinations of excitation and emission wavelengths 
to be scanned continuously, and the data that it 
produces can be handled using either an artificial 
neural network [3] or chemometric methods etc [4]. 
But artificial neural networks require a non-linear 
function such as a sigmoid equation to connect the 
nodes in order to establish some mathematical 
relationships for a bioprocess [5-6].  

Chemometric methods such as principal component 
analysis (PCA) and partial least squares regression 
(PLS) are useful for the quantitative analysis of the 
spectroscopic data. PCA allows the entire spectrum to 
be analyzed quantitatively and provides a synthetic 
description of large data sets with a minimal loss of 
information. It has also been used to analyze the 
excitation-emission fluorescence matrices of olive oil 
[7] and to reduce the dimensions of the fluorescence 
spectra resulting from the monitoring of wastewater 
treatment processes [8]. The metabolic changes (e.g. 

FAD/FMN, pyridoxal-5-phosphate) in recombinant 
E.coli with time were analyzed qualitatively in a 
selective and nonselective environment using the PCA 
technique [9]. The PLS method has been used to 
analyze and model the spectral data. It is one of the 
most widely used multivariate calibration methods and 
has been applied extensively to the chemometric 
modeling of spectroscopic data, e.g. IR spectroscopic 
data. Chemometric models of 2D fluorescence spectra 
by PLS have been reported in some biotechnological 
processes. For example, PLS was used to establish 
mathematical relationships between the on-line 
collected fluorescence data and the off-line process 
data such as cell mass and polymyxin concentrations 
in Bacillus polymyxa cultivations [2]. The PLS models 
established using fluorescence measurement data were 
also used to predict the cell mass and substrates 
(glycerol, methanol) during non-induced and induced 
Rhizopus oryzae lipase production in Pichia pastoris 
fermentations [10], the protein and alkaloid 
concentrations during the fermentation of Claviceps 
purpurea [4] and CO2 and O2 compositions in exhaust 
gas in the cultivations of Pseudomonas fluorescence 
[11].  

In this study, two fermentation processes with 
Saccharomyces cerevisiae were monitored on-line 
using a 2D spectrofluorometer. The monitoring of 
the fermentation process was interpreted with a 
reduction of the dimensions of the 2D fluorescence 
spectral data by PCA. The PLS-based calibration 
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models were established for a few fermentation state 
variables using the 2D fluorescence spectra 
collected and their prediction performance were 
evaluated.  

 
 
2 Materials and methods 
 
2.1 Fermentations with S.cerevisiae 

Yeast S. cerevisiae ATCC7754 (American Type 
Cell Collections, USA) was employed for the 
production of intracellular glutathione (GSH). The 
fermentation was performed at pH 5.5 and 30 °C in 
the bioreactor with 1 vvm of the aeration rate and 
350 rpm of the stirrer speed. The fermentation 
medium consisted of glucose, salts (NaCl, KH2PO4, 
KCl, MgSO4), a trace element solution, vitamin 
solution, and three precursors (glutamic acid, 
L-cysteine, glycine) for GSH [12]. Some details 
about the analysis of GSH and L-cysteine, etc. were 
described in our previous paper [13]. 

 
2.2 Fermentation system with a 2D 
spectrofluorometer 

The fermentation system consisted of a 2.5 liter 
stainless steel stirred tank reactor (working volume: 
5.0 liter, KoBiotech Co., Korea), a pH sensor and a 
DO-meter (Mettler-Toledo Co., USA), an 
O2-/CO2-analyzer (Lokas Co., Korea), as well as 
temperature-, stirrer speed-, antifoam- and pH 
controllers. A 2D spectrofluorometer (Model 
F-4500, Hitachi Co., Japan) was connected to a 
quartz window in a 19-mm electrode port of the 
stainless steel reactor. It was operated in the same 
conditions as shown in our previous work [13] 

 
2.3 Chemometric methods 
 
2.3.1 Principal component analysis (PCA) 

The whole 2D fluorescence spectral data gathered 
during fermentation can be structured in the form of  
the fermentation time and combinations of the 
excitation and emission wavelengths. PCA 
decomposes a given fluorescence spectral data 
matrix (X) as the sum of the outer product of vectors 
qa and pa plus a residual matrix E, as shown in the 
following equation. 
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            (1) 

where Q is known as the score matrix and contains 

information on the relationship between samples. P 
denotes the loading matrix and includes information 
on the relationship between variables. In PCA, the first 
principal component (q1 and p1 pair or PC1) captures 
the largest amount of variances in the data. Each 
subsequent PC (PC2, PC3 …) captures the largest 
possible amount of variance remaining at that step.  
 
2.3.2 Partial least squares regression (PLS)  

PLS attempts to identify the factors (called latent 
variables, LVs) that not only capture the largest 
amount of variance in the fluorescence spectra, but 
also allows a linear correlation to be obtained 
between the spectral data and process variables 
through an inner relation. Details of the PLS 
regression technique are described elsewhere [14]. 

The above-mentioned chemometric methods 
were applied using the MatLab 6.2 (The 
MathWorks, Inc., Natick, USA) program with the 
statistical toolbox [15]. 

 
2.3.3 Input data and model evaluation 

A total of 1558 (number of combinations of 
excitation and emission wavelengths, CWL) x 600 
(scan numbers) spectral data were collected in the 
case where the fluorescence sensor was operated 
with a step size of 10 nm in the excitation 
wavelength range of 250-650 nm and the emission 
wavelength range of 280-650 nm, with a full 
spectral scan being taken every 5 min for 50 
fermentation hours[16]. After filtering some of the 
light scattering data, the total CWLs could be 
reduced to 493 CWLs. The spectral data concerning 
the scan numbers, i.e. fermentation time, can be 
selected randomly and split into 70% (training data) 
and 30 % (prediction data) portions using the 
cross-validation technique. The training data was 
subdivided into calibration data (70%) and 
validation data (30%) using the above-mentioned 
cross-validation technique. After a multivariate 
calibration model had been established using the 
calibration data, it was tested using the validation 
data. The prediction data was also used to test the 
prediction capability of the calibration models. The 
on- and off-line measurement data were also 
interpolated or extrapolated and compared with the 
model data.  

The performance of a chemometric model can be 
evaluated by estimating the ‘average’ deviation of 
the model from the data. This means that an 
evaluation of the calibration (RMSEC), 
cross-validation (RMSECV) and prediction power 
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(RMSEP) of a chemometric model can be 
performed using the root mean squared errors 
(RMSE) for the calibration data, validation data and 
prediction data. The RMSE is given as follows [17]:  

  
n

)yŷ(
RMSE

n

1i

2
imodel i,∑

=

−
=              (2)  

where ŷi,model is the value of the property of interest 
calibrated, validated or predicted by the model for 
object i, and yi is the known value (i.e. on- & off-line 
data) of the property of interest for object i, where n is 
the number of sample data points.  
 
 
3   Results and discussion 
 
3.1 Fermentation processes with S. cerevisiae 

During the fermentation of S. cerevisiae, cysteine 
was added to the processes at 11.0 h, whereas glutamic 
acid and glycine were added to the bioreactor at the 
beginning of the fermentation in CultPro1 and at 11.0 
h in CultPro2, respectively [12]. The cell growth and 
GSH production in CultPro1 and CultPro2 are shown 
in Fig. 1. After 10.5 h, the DCW in CultPro1 was 
higher than that in CultPro2, because a higher 
concentration of glucose (20 g/L) was added in 
CultPro1 than in CultPro2 (5 g/L). The glucose 
concentration in CultPro1 decreased very rapidly and 
its concentration reached zero after 10.5 h. However, a 
lower concentration of cysteine (8 mM) was 
introduced into the CultPro1 than into the CultPro2 
(16 mM). Higher amounts of intracellular GSH were 
produced in CultPro1 than in CultPro2, but its 
maximum concentration was reached at 22.0 h in both 
processes. The concentrations of CO2 and O2 in the 
exhaust gas of the two processes were maximal and 
minimal at 10.5 h, respectively, although their 
concentrations were quite different. 
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Fig. 1. On- and off-line measurement data of two 
fermentation processes with S. cerevisiae: CultPro1 
data for DCW (●), GSH (■), glucose (▲), CO2 (___), 
O2 (___), and cysteine (ξ); CultPro2 data for DCW (○), 
GSH (□), CO2 (---), O2 (---), and cysteine (ψ).  

 
3.2 On-line Monitoring of the fermentation 
processes with analysis of 2D fluorescence 
spectra by PCA 

The score and loading plots produced by the PCA 
do not only help to understand the relationship 
between each fluorescence spectrum and the cellular 
states, but also provide some qualitative information 
on the fermentation process. 

  The large volume of 2D fluorescence spectra 
produced during fermentation can be reduced in 
dimension by PCA. After filtering out some of the 
light scattering data, the spectral data can be reduced 
and used as the column of the fluorescence spectral 
matrix (X) in Eq. (1). The whole spectral matrix can 
then be decomposed into the score and loading data 
matrices. The number of columns in the 
fluorescence spectral matrix, i.e. 378 CWLs in this 
study, can affect the computation time of the data 
matrix and the amount of information. Therefore, a 
total of 98 CWLs, which were selected  by using 
SOM algorithm [13], was employed to calculate the 
variance which can be captured by each PC. In the 
case of CultPro1, PC1, PC2, PC3, PC4 and PC5 
captured 61.8%, 4.71%, 1.52%, 1.10% and 1.04% of 
the total variances in the entire fluorescence spectra, 
respectively, while each score value for CultPro2 
was 57.1%, 3.10%, 1.98%, 1.32%, and 1.23%.  

  The score plots of the PCs in CultPro1 and CultPro2 
are shown in Fig. 2. The cell growth, as well as the 
difference in the time of addition of the two amino 
acids (glutamic acid and glycine) to the process, can 
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be interpreted by comparing the score plots of the two 
processes. From the score plots, the trends in the score 
values of the PCs at the beginning of fermentation and 
at 11.0 h in CultPro1 were different from those in 
CultPro2. Glutamic acid and glycine were added to 
CultPro1 at the beginning of fermentation, whereas 
they were added to CultPro2 at 11.0 h. This difference 
can be observed in the change of the scores of PC1 and 
PC2 in the score plots. The score values of PC1 and 
PC3 reflected the addition of cysteine to both 
processes at 11.0 h. In the score plots of PC1 and PC3, 
the increase in the score values of PC3 starting from 
11.0 h might also result from the change from an 
oxidative to an oxidoreductive metabolism [8], for 
example the conversion of glucose to ethanol. The 
increase in the scores of PC3 starting from 35.0 h may 
represent the production of other metabolites or the 
degradation of GSH within the cells, as shown in Fig. 
1. 
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Fig. 2. Score plots of PC1, PC2 and PC3 for CultPro1 
and CultPro2 

 
3.3 Chemometric modeling of 2D fluorescence 
spectra 

The 2D fluorescence spectra collected during 
fermentation have been used to establish PLS 
models. The calibration and prediction performance 
of the  PLS models with the optimum number of LV 
have been compared for a few process parameters.  

 
3.3.1 Determining optimum numbers of LV 

The number of LVs in the PLS model influences 
the outcome of a chemometric model. The optimum 
number of LVs was determined by correlating some 
of the prediction values derived from the 

chemometric model with a few on- and off-line 
measurement data points, i.e. by computing the 
minimum value of the RMSECV. In a process, 
CultPro1, the optimum number of LVs for DCW 
and cysteine were determined by calculating the 
RMSECV values using 154 validation data points 
(30 % of the training data). Fig.3 shows a plot of the 
values of the RMSECV for DCW and cysteine as a 
function of the number of LVs. The RMSECV 
values of cysteine were relatively low at 3 LVs for 
the PLS model. However, DCW has low RMSECV 
values at 4 LVs for the PLS model. This means that 
3 or 4 LVs may be chosen to construct each 
calibration model with 70 % of the training data. 
The optimal number of LV in the PLS were 
calculated for the process parameters in the 
fermentation processes.  
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Fig. 3 RMSECV values of DCW and cysteine 
according to number of LVs for the PLS model in 
CultPro1  
 
3.3.2 Calibration and prediction performance of 
the PLS models 

The calibration power of the PLS models using 
the 2D fluorescence spectra obtained in a 
fermentation process was calculated, and the 
RMSEC value for a process parameter was 
evaluated. The RMSEC value usually provides 
some information regarding the fit of the calibration 
model to the measurement data of a particular 
process parameter.  

The results of each calibration model were also 
associated with the on- and off-line measurement data. 
Table 1 shows the RMSEC values and the correlation 

Proceedings of the 8th WSEAS Int. Conference on Mathematics and Computers in Biology and Chemistry, Vancouver, Canada, June 19-21, 2007      119



coefficients (R2) between the PLS-calibrated DCW 
and cysteine and off-line measured  DCW and 
cysteine in CultPro1 and CultPro2 
 

Table 1 RMSEC values and correlation 
coefficients (R2) for DCW and cysteine in the 
CultPro1 and CultPro2.  

 
CultPro1 CultPro2  

DCW Cysteine DCW Cysteine
RMSEC 0.50481 0.7862 0.38334 1.6046 
R2 0.994 0.985 0.991 0.981 
 

The lower RMSEC values and higher correlation 
coefficients of the PLS model indicate that the PLS 
model using the 2D fluorescence spectra provides a 
good fit to the on- and off-line measurement data and 
can be used to predict the results for other processes.  
 

The prediction power of the PLS models to new 
process data was investigated using 30 % of the total 
spectral data (i.e. prediction data), which was not 
included in the computation of the calibration model 
for the process parameters. Some process 
parameters were predicted by the PLS models and 
compared with the on- and off-line measurement 
data.  

In Fig. 4 the data predicted using the PLS models 
are presented along with interpolated measurement 
data of the DCW and cysteine in CultPro2.  

From Fig. 4 there was a slight difference between 
the measured data and the data predicted by the 
DCW model. The RMSEP value for DCW was 
0.49546 g/L, while it was 1.9058 mM for cysteine. 
The correlation coefficients (R2) between the 
prediction and measurement data were 0.9493 for 
DCW, and 0.9416 for cysteine, respectively. The 
high correlation coefficients between the prediction 
data and the measurement data and the low RMSEP 
values highlight the good statistical power of the 
chemometric model based on the 2D fluorescence 
spectra to predict new data.  

The RMSEP values and correlation coefficients 
between the predicted and measurement data were 
calculated for the other parameters of the fermentation 
processes. 

Chemometric methods provide a rich tool set for 
process monitoring and modeling because they not 
only handle a large number of process variables but 
provide data compression and a great deal of process 
diagnostic information. Furthermore, the 

development of process modeling is straightforward 
because they are deterministic and the 
computational requirements are relatively low.  
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Fig. 4 Correlation between the PLS-predicted DCW 
and cysteine data to off-line measured DCW and 
cysteine data in CultPro2 
 
 
4   Conclusion 

In this study, we presented the monitoring of 
fermentation processes of S. cerevisiae using PCA 
as well as the process modeling with the PLS 
methods. A large amount of 2D fluorescence 
spectral data were collected in the fermentation 
processes, and the dimension of the data was 
reduced using PCA. The score and loading plots 
were used to describe the qualitative tendency of the 
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fermentation processes. The PLS models were used 
to analyze the 2D fluorescence spectra. The PLS 
model showed good calibration and prediction 
power.  

 
 
Acknowledgements 
This work was supported by grant No. RTI04-03-03 
from the Regional Technology Innovation Program of 
the Ministry of Commerce, Industry and Energy 
(MOCIE), and also in part by BK21 program from the 
Ministry of Education & Human Resources 
Development, Republic of Korea 
 
 
References: 
[1] M.B. Haack, A. Eliasson, L. Olsson, On-line cell 

mass monitoring of Saccharomyces cerevisiae 
cultivations by multi-wavelength fluorescence. 
Journ. Biotech. 114, 2004, 199-208 

[2] A.E. Lantz, P. Jorgensen, E. Poulsen, C. 
Lindemann, L. Olsson, Determination of cell mass 
and polymyxin using multi-wavelength 
fluorescence. Journ. Biotechnol. 121, 2006, 
544-554 

[3] G. Wolf, J.S. Almeida, C. Pinheiro, V. Correia, C. 
Rodrigues, M.A.M. Reis, J.G. Crespo, 
Two-dimensional fluorometry coupled with 
artificial neural networks: a novel method for 
on-line monitoring of complex biological 
processes. Biotech. Bioeng. 72, 2001,  297-306 

[4] D. Boehl, D. Solle, B. Hitzmann, T. Scheper, 
Chemometric modeling with two-dimensional 
fluorescence data for Claviceps purpurea 
bioprocess characterization. Journ. Biotech. 105, 
2003, 179-188 

[5] I.A. Basheer, M. Hajmeer, Artificial neural 
networks: fundamentals, computing, design, and 
application. Journ. Microbiol. Meth. 43, 2000, 
3-31 

[6] K.I. Lee, Y.S. Yim, S.W. Chung, J. Wei, J.I. Rhee, 
Application of artificial neural networks to the 
analysis of 2D fluorescence spectra in recombinant 
E.coli fermentation processes. Journ. Chem. Tech. 
Biotech. 80, 2005, 1036-1045 

[7] F. Guimet, J. Ferre, R. Boque, F.X. Rius, 
Application of unfold principal component 
analysis and parallel factor analysis to the 
extrapolatory analysis of olive oils by means of 
excitation-emission matrix fluorescence 
spectroscopy. Anal. Chim. Acta 515, 2004, 75-85 

[8] B. Tartakovsky, L.A. Lishman, R.L. Legge, 

Application of multi-wavelength fluorometry for 
monitoring wastewater treatment process 
dynamics. Water Res. 30, 1996, 2941-2948 

[9] L. Johansson, G. Liden, A study of long-term 
effects on plasmid-containing Escherichia coli in 
carbon-limited chemostat using 2D-fluorescence 
spectrofluorimetry. Biotechnol. Prog. 22, 4, 2006, 
1132-1139 

[10]  A. Surribas, D. Geissler, A. Gierser, Th. 
Scheper, B. Hitzmann, J.L. Montesinos, F. Valero, 
State variables monitoring by in situ 
multiwavelength fluorescence spectroscopy in 
heterologous protein production in Pichia pastori. 
Journ. Biotech. 124, 2006, 412-419 

[11] E. Skibsted, C. Lindemann, C. Roca, L. Olsson, 
On-line bioprocess monitoring with a 
multi-wavelength fluorescence sensor using 
multivariate calibration. Journ. Biotech. 88, 2001, 
47-57 

[12] H. Shimizu, K. Araki, S. Shioya, K.I. Suga, 
Optimal production of glutathione by controlling 
the specific growth rate of yeast in fed-batch 
culture, Biotechnol. Bioeng. 38, 1991, 196-205 

[13] J.I. Rhee, K.-I., Lee, C.-K. Kim, Y.-S. Yim, 
S.-W. Chung, J. Wei, K.-H. Bellgardt, 
Classification of two-dimensional fluorescence 
spectra using self-organizing maps. Biochem. Eng. 
Journ. 22, 2005, 135-144 

[14] P. Geladi, B.R. Kowalski, Partial least-squares 
regression: tutorial. Anal Chim. Acta 185, 1986, 
1-17 

[15] Maltlab manual, vers. 6.1, The Mathworks, Inc., 
USA, 2002 

[16] S. Marose, C. Lindemann, T. Scheper, 
Two-dimensional fluorescence spectroscopy: A 
new tool for on-line bioprocess monitoring. 
Biotech. Progr. 14, 1998, 63-74 

[17] R. Bo, Multivariate calibration. What is in 
chemometrics for the analytical chemist? 
Anal.Chim. Acta 500, 2003, 185-194 

 

 

Proceedings of the 8th WSEAS Int. Conference on Mathematics and Computers in Biology and Chemistry, Vancouver, Canada, June 19-21, 2007      121


