
Enhancing Mood Metrics Using Encapsulation

SUNINT SAINI, MEHAK AGGARWAL

Department of CSE & IT

Guru Nanak Dev Engineering College

Gill Road, Ludhiana, Punjab

 INDIA

(sunintkaur, mehakaggarwal)@rediffmail.com

Abstract: The requirement to improve software productivity and software quality has promoted the research

on software metrics. Encapsulation is a powerful mechanism in Object-Oriented programming and it is critical

for building large complex software; which can be maintained and extended. Since the emergence of the

Object-Oriented approach to software development, it has been recognized that the development of Object-

Oriented metrics to measure the quality of software is a new challenge. Many researchers have already risen to

this challenge, most notably Chidamber & Kemerer, Abreu, Lorez and Kidd. But the metrics introduced by the

above proponents lack in measuring the encapsulation mechanism. This paper purposes a new metric to

measure encapsulation. Encapsulation constitutes both privacy and unity and these two attributes have been

taken to purpose the above mentioned metrics. A statistical analysis on EF (Encapsulation Factor) metric is also

done in this study.

Keywords: Metrics, Object-Oriented, classes, Data Visibility, Cohesion, Encapsulation

1. Introduction
Many criticisms of Object-Oriented paradigm,

when closely analyzed, turn out to be a criticism of

the language being used-in most cases the language

like Java, C++ or Smalltalk etc. The problems with

such a language stem from the programmer failing

to use a pure Object-Oriented model, and falling

into old, function-oriented habits. So to ensure that

pure Object-Oriented design is being created is by

Object-Oriented design metrics. A small set of

well-defined metrics, which can measure the source

code automatically and produces summary results

that are easily understood and interpreted, will

allow the programmer to create a clear overview of

the system he is developing. The main OO

mechanisms of abstraction, encapsulation,
inheritance, coupling and polymorphism are well

understood by programmers and designers, and it is

recognized that making “good use” of these

mechanisms is key to producing elegant,

maintainable and reusable software system. Many

Object-Oriented metrics have been proposed by

Chidamber and Kemerer, MOOD metrics and
Lorenz and Kidd [2,3,4,5] metrics that don’t

measure all the mechanisms. The challenge then is

to develop Object-Oriented metrics to measure all

the mechanisms. In this paper a new metric to

measure the Encapsulation is proposed.

2. Encapsulation and Its Importance
Encapsulation is defined as the ability to provide

users with a well-defined interface to a set of

functions in a way which hides their internal

workings.

 Encapsulation is concerned with the

packaging of data and behaviour to represent a

single entity. To properly access the quality of

encapsulation human understanding is required

and the design also needs to be fully

comprehended. There are however two aspects

of the encapsulation that can be assessed

automatically. The first concerns the degree to

which a single class represents a single entity

called Class Unity and second relates to the

visibility of a class data called data visibility.

This is explained in section 3.

 Encapsulation is critical to building large

complex software, which can be maintained

and extended. Many studies have shown that

the greatest cost in software is not the initial

development, but the thousands of hours spent

in maintaining the software. Well-encapsulated

components are far easier to maintain. Once

software is in place, another great expense is

extending its functionality. As new features are

added, there is risk that it'll break existing parts

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 252

of the application. Encapsulation helps to

minimize this risk. In a well-designed program,

each object should have a single area of

responsibility. That object presents an

interface, which defines the services the object

provides.

3. Purposed Metric For

Encapsulation
A class is composed of attributes and methods. In

this proposal we measure the privacy in terms of

the attributes (Number of private attributes in the

class) and unity in terms of methods and attributes

(cohesion among the attribute and methods in a

class).

3.1 Measuring Class Unity (CU)
Class Unity is a measure of the similarity of

methods in a class. Two methods are considered

similar if they access one or more of the same

instance fields. CU counts distinct cluster of

methods, where a cluster is defined as a group of
methods that are linked to each other, either

directly or indirectly, through accessing the same

field or set of fields, any one method in the cluster

accessing at least one field which is accessed by at

least on of the other fields in the cluster. A cluster

can be conceived as a graph where the nodes are

the methods. Two nodes are connected by an edge

if the two methods both access the same instance

variables. A measure of one indicates full unity (all

methods connected).

 Chidamber and Kemerer [2] proposed a measure

called LCOM (Lack of Cohesion in methods) to

measure the cohesion in object-oriented methods. It

is based on the count of the number of paired

methods that use the same instance variables

directly. Here to measure cohesion as in [1] we

also consider the pair of methods, which use the

common attributes but the manner in which an

attribute may be used is differently i.e. both the

attributes used either directly or indirectly by a

method are considered. An instance variable is

directly used by a method M if instance variable

appears as a data token in the method M. An

instance variable is indirectly used by a method M

if 1) the instance variable is directly used by

another method M1 that is called directly or

indirectly by M, and 2) the instance variable
directly used by M1 is in same object as M.

3.1.1 Graphical Model of the class [1]

To measure the class cohesion, two basic

components of the class are required i.e. methods

and instance variables.

 In the graphical representation of the

class, methods are represented by rectangle and

ovals are used to represent the instance

variables. A link between a rectangle and an

oval indicates that the method corresponding to

the rectangle uses the instance variables

corresponding to the oval. Figures below

shows the connections for each instance

variable. Here, the instance variable end is used

by the methods queue, insert, delete, Isempty.

All of the methods that use the variable end are

connected through the variable end.
 A class constructor (e.g. method queue) is an

initialization function. It will generally access all

instance variables in the class, and thus, share

instance variables with virtually all other methods.

Constructors create connections between methods

even if the methods don’t have any other

relationships. Thus, constructor functions are

removed from this model. Links between

constructors queue and instance variables in figures

below are represented as dashed lines. Destructor

functions are also excluded from this model. The
code for c++ class queue is shown as under and

Figures 1,2,3,4,5 shows the graphical model of the

class queue. The source code for the class queue is

shown as under.

Class Queue

{

Private: int *element, beg, end, size;

Public: Queue(int s)

 { size=s; element=new int[size]; beg=0,end=s;}

 int Isempty() {return end;}

 int Size() {return size;}

 void insert(int item){

 if (end==size+1)

 printf(“Queue is full\n”);

 else element[end++]=item;}

 int Delete() { if (Isempty()=0)
 printf(“Queue is empty\n”);

 else{ beg++;

 if(beg==size) end=0; }}

};

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 253

Fig.1: Graphical model for Class Queue

 Fig.2: Connection for instance variable Element

 Fig.3: Connection for instance variable End

 Fig.4: Connection for instance variable beg

 Fig.5: Connection for instance variable Size

The graphical model includes the information to

define class cohesion. A method is represented as a

set of instance variables directly or indirectly used

by the method. We call the representation of a

method an abstracted method, AM.

 An instance variable is directly used by a

method M if the instance variable appears as a data

token in the method M. The instance variable is

defined in the same class as M. DU(M) is the set of

instance variables directly used by a method M.

 A direct/indirect call relation defines the

indirect use of an instance variable. A method M1 is
directly called by a method M if M is predecessor

of M1 in the call graph. Indirect call relations are

the transitive closure of the direct call relations.

Thus a method M1 is indirectly called by method M

if there is path from M to M1 in statically

determined call graph.

 An instance variable is indirectly used by a
method M if firstly the instance variable is directly

used by another method M1 which is called directly

or indirectly by M, and secondly the instance

variable directly used by M1 is in the same object as

M. IU(M) is a set of instance variables indirectly

used by method M.

 A class is represented as a collection of AM’s

where each AM corresponds to visible method in

the class. The representation of a class is called an

abstracted class, AC.

AM(M) = DU(M) U IU(M)

AC(C) = [AM(M) | M ε V(C)]

V(C) is the set of all visible methods in class C and

AM corresponds to visible methods defined only

within the class.

The abstracted class of queue of Figure 1 is:

AC(Queue) = [{end}, {size}, {end, size,

element}, {beg, size, end}]
The direct connectivity between methods is

determined from class abstraction. If there exist one

Queue Insert

Delete

element

Queue Delete

Isempty Insert

end

Queue Delete

Size Insert

Size

Queue

beg

Delete

Queue

Insert

Size

Delete

Isempty

element

ay

end size beg

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 254

or more common instance variables between two

method abstractions then the two corresponding are

directly connected as shown in Fig 6.

Fig 6:Connectivity between methods in class Queue

There is one measure of class cohesion given in [1]

based on direct connectivity between methods. Let

NP(C) is the total number of pairs of abstracted

methods in AC(C). NP is the maximum possible

number of direct or indirect connections in a class.

If there are N methods in a class, Then NP(C) = N

* (N-1)/2. Let NDC(C) is the number of direct

connections in AC(C). Then Class cohesion is

given by relative number of directly connected

methods given by: CC(C) = NDC(C) /NP(C)

3.2 Measuring the data visibility of a class

DV is a measure of how visible (and therefore

directly accessible) a class’s data is. A class

data is considered hidden (invisible) if all its

instance fields are private and can only be

manipulated via methods. DV uses a scale of 0-

1 for each fields, where 0= fully hidden

(private), 1= fully visible (public) and the value

for partially visible (e.g. protected) fields lies

between 0 and 1 whose value is calculated by

dividing the number of classes in the system

that can access the field divided by the total

number of classes in the system, less one (i.e.

the class itself). The approach taken to measure

the level of data visibility is a class is based on

the Attribute Hiding Factor (AHF) metric

proposed by MOOD metrics team [3].

The DV is given by:-

 DV =

()
()

)(

)1(
1

CA

AV

d

CA

m
m

d

∑ −
=

The final DV value for a class is the average

visibility across all fields in the class. The

closer the total measurement is to 1, more

hidden is the data. Ideally a class should have a

1 (total hidden) value for DV. The description of
the variables is shown in table 1.

Table 1: Description of variables used in DV

Variab

le
Description

Implementation in

C++

TC Total classes
Total number of

classes

Ad(C)

Attributes

defined in a

class (not

inherited)

Data members

V(Am)

Visibility - %

of the total

classes from

which Am is
visible

= 1 for attributes in

public clauses;

= 0 for those in

private clauses;

= DC(Ci)/(TC-1) for

attributes in protected

clauses

note: DC(Ci) =

descendants of Ci

3.3. Measurement of Encapsulation Factor

(EF) for a class
EF is a metric to measure the encapsulation level of

a class or a system. It is a singular metric that takes

the two components of the class i.e. the attributes

and methods. It is a function of two metrics (data

hiding and cohesion) in the class. Ideally a class

will have a value of 1 for DV and Value of 1 for

CU its value lies in the range [0,1] where 0 means

(minimal) and 1 means (maximal) encapsulation in

the system or class. Classes with higher value are

desirable.

Fig.7. Graphical representation of DV and CU

As shown in figure 7 DV (Data visibility of a class)

be the X- axis in range [0, 1] and CU (class unity)

is the Y-axis in range [0, 1]. A class having 100%

encapsulation (desired value) will have a value 1

for both DV and CU.

1

1

 CU (Class Unity)

DV (Data Visibility)

 X (1,1): Optimal

Point

Insert Delete

Isempty Size

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 255

 Using DV and CU values, we can get a point in the

graph. To determine the encapsulation of a given

class, we should observe the distance of the point to

the optimal point. Using the Pythagoras theorem

[6,7] , we can easily find the distance of a point to
the optimal point.

EF =
2

1
)1()1(
22

CUDV −− +
−

2 is hereby regarded as a normalization factor

for the equation to obtain EF.

 EF aims to indicate the level of encapsulation in

the system or class. In general we aim for the high

level of encapsulation i.e. EF is close to 1 is

desired. The following are the best and worst
possible cases.

 Best Case (EF=1):
The best case for EF is 1 when both DV and CU are

1. Point obtained would be at (1,1) which is the

optimal point and therefore has a distance of 0. So

EF = 1-0 =1 for this case i.e.100%

 Worst case (EF=0):

The worst case for EF=0 when both DV and

CU are 0.Therefore the point obtained is at

(0,0), which is the maximum distance from the

optimal point. EF=1-1=0. Consider the C++

code shown above.

EF factor is calculated as:

Class cohesion CC= 5/6
Data Visibility =1

Encapsulation Factor= 0.83

Above values indicates that class is well

encapsulated.

4. EF Metric Analysis
We give an outline of our approach. In our

approach we perform a statistical analysis on EF
metric as stated in section 3. We had collected three

applications to statistically analyze EF. The

applications were labeled as: System A, System B

and System C. System A is the “Banking

Application” that handles the transactions

implemented in C++ and consisting of 5 classes.

System B is the “Simulation of Hospital

management System” in C++ having 3 classes and

System C is the “Simulation of Sorting Master” in

c++ that visualizes the process of sorting the

numbers using various sorting algorithms and make

maximum use of graphical functions. The

encapsulation factor metric value for system A, B,

C is shown in fig8, fig9 and fig10.

0

0.2

0.4

0.6

0.8

Classes in system A

E
n
c
a
p
s
u
la
ti
o
n
 F
a
c
to
r

All_tasks

Date

DOB

 Fig. 8: Encapsulation factor for System A

0

0.5

1

1.5

Classe in system B

E
n
c
a
p
s
u
la
ti
o
n Shape

Control

Initial

Date

Account

 Fig. 9 : Encapsulation factor for System B.

0

0.2

0.4

0.6

0.8

1

1.2

1

Classes in System C

E
n
c
a
p
s
u
la
ti
o
n
 F
a
c
to
r

Graphic

Csort

BubbleSort

SelectioSort

InsertioSort

MergeSort

QuickSort

FlatButton

EditBox

Option_Button

Optionbutton

panel

Bevel-Panel

Bevel
 Fig 10: Encapsulation factor for System C

Table2 summarizes the software applications used

in validating the proposed object-oriented metric

for encapsulation. Table 3 shows the correlation

analysis summary, which have been generated

using the statistical formulas defined in [8].

Table 2: Summary of applications used to validate

metric proposed for Encapsulation

System A B C

Total no. of

attributes

16 20 50

Total no. Of

methods

31 19 47

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 256

Number of

classes

5 3 14

Language C++ C++ C++

Code

Construct

Object-

Oriented

Object-

oriented
Good

Object-

Oriented

Use of

Encapsulatio

n Mechanism

Low Low High

Table 3: Correlation Analysis Summary

 EF x Cohesion EF x DV

System A 0.75 -0.5

System B 0.40 0.91

System C 0.85 0.80

5. Discussion
The difference was presented in the metric already

given by MOOD to measure the encapsulation and

proposed one. The metrics MHF and AHF [3][4]

are considered by MOOD to be measures of

encapsulation. This indicates poor understanding of
the concept of encapsulation [5].

 Information hiding and encapsulation are not

synonymous. Information hiding is only one part of

the concept. Encapsulation can be thought of as an

aggregate of two different but related terms, namely

privacy and unity. A class that has only private data

members will not necessarily be unified. Equally, a
unified class may contain only visible data. So

MHF and AHF are not measures of encapsulation.

Further AHF metric contributes to such a measure

but it is doubtful the MHF measure serves an

equivalent purpose.

 EF metric measures the encapsulation as a

function of both attributes namely privacy and

unity. Privacy is measured in terms of private data

members (Number of private attributes in a class)

and Unity is measured in terms of the attributes and

methods (cohesion between the private, protected

and public attributes and methods).

 We make certain observations from table1
and table2. In table 2 it is shown that the three

systems have different level of use of encapsulation

mechanism. From correlation analysis summary in

Table 3, we can study that in system A, cohesion is

highly correlated with encapsulation resulting in

lack of the data visibility. System B is highly

correlated with data visibility resulting in lack of

cohesion factor. System C having high correlation

of encapsulation with both the factors i.e. data

visibility and cohesion, suggesting well –

encapsulated classes that can be reused, extended

and easily maintained.
 From statistical analysis, we can conclude

that if a class is having encapsulation more than

80%, then there is proper use of encapsulation and

there is no need to split the classes further.

6. Future Scope
We must nevertheless mention that applications

used for the study were very small compared to
large industry system. Therefore in terms of future

scope we suggest that further characteristics of

classes need to be studied to establish relationship

between proposed metric and behavior of the

classes. Further validation of the proposed metric

can be done with an extended set of classes and

further evaluation of our metric can be performed.

References

[1] James M. Bieman and Byung-kyoo kang

“Cohesion and reuse in an Object-Oriented

System” Symposium on Software Reusability

pp 259 - 262, 1995.

[2] R. Chidamber and Kemerer “Towards a

Metrics Suite for Object Oriented Design, IEEE

Transactions on Software Engineering Vol. 20

No. 6 pp.1994, 476-493.

[3] Rachel Harrison, Steve J. Counsell and Reuben

V. Nithi. “An Evaluation of the MOOD set of

Object Oriented software metrics” IEEE

Transactions on Software Engineering VOL.24

No. 6 June 1998.

[4] Tobias Mayer and Tracy Hall “A Critical

Analysis of Current OO Design Metrics”

Software Quality Journal, Vol 8, 97-110, 1999.

[5] Tobias Mayer and Tracy Hall “Measuring OO
Systems: A Critical analysis of the MOOD

Metrics”, Technology of object oriented

languages and systems. pp 108, 1999.

[6] http://en.wikibooks.org/wiki/Geometry

[7] http://en.wikibooks.org/wiki/Statistics

[8] S.P Gupta “Statistical Methods”,Published by

Sultan Chand and sons 23, Daryaganj, New
Delhi.

Proceedings of the 8th WSEAS International Conference on Automation and Information, Vancouver, Canada, June 19-21, 2007 257

