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Abstract: We consider a stationary distribution of a finite, irreducible, homogeneous Markov chain. Our aim is to
perturb the transition probabilities matrix using approximations to find regions of feasibility and optimality for a
given basis when the chain is optimized using linear programming. We also explore the application of perturbations

bonds and analyze the effects of these on the construction of optimal policies.
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1. Introduction

A perturbation in a Markov chain can be referred
as a slight change in the entries of the correspond-
ing transition stochastic matrix, resulting in structural
changes in the underlying process, for example, sets
of states which in the original case do not communi-
cate, do so after a perturbation is imposed. Also, pas-
sages times that originally were not well defined ran-
dom variables, may become so after the perturbation.
In this sense, a square matrix is stochastic if its entries
are real and non-negative and the sum of the entries in
each row is equal 1.

Their importance is related with the dynamics that
these represent, particularly, the singularly perturbed
Markov chains have a few time scales. One time scale
may correspond to the more frequent transitions oc-
curring among states which communicate also in the
unperturbed case. In this document we are interest-
ed in the matrix perturbation procedure from a proba-
bilistic point of view, where the perturbation quantity
of the original stochastic matrix, can be approximat-
ed by a given matrix4 such thaip(e) = ¢ + A(e) =

¢+ €A.

Given the perturbed(e) matrix we approach the pro-
blem of analyzing the effects of the perturbation on
the optimal policies of a Markovian decision process,
sustained in the Frobenius norm ¢fe). The marko-
vian process describes the productive and reproduc-
tive lifespan of herd sows, where, under an infinite
planning horizon, the linear programming (LP) is used

as an optimization technique.

This investigation constitutes an alternating focus to
the problem of replacement management of animals
in a herd, sows in this case. This consists in to consid-
er at regular time intervals whether it should be kept to
a sow in the herd for an additional period or it should
be replace by a new animal (gilt) and to optimize
the expected return associated to the decisions made
during the process (Tijms, 1994). Several authors
have approached this problem with Markovian mod-
els or some of their variants, see for instance, Howard
(1960), van der Wal and Wessels (1985), White and
White (1989), Kristensen (1996) and Pla (2002). In
this document we are devoted to study the proper-
ties of the transition probabilities matrix of the pro-
cess when this is perturbed in random form, and, to
analyze the effects of such perturbations on the opti-
mal policies of the process. To illustrate our proposal
we consider the sow replacement problem developed
in Pla, Pomar and Pomar (2003). The system consist
in a sow farm where sows are allowed to reach nine
reproductive cycles as a maximum and at the end of
each cycle, two actions can be taken: keep or replace.
The problem is represented as a regular Markov deci-
sion process and solved using a linear programming
model. Transition probabilities and reward values are
arbitrary but near to what are observed in actual sys-
tems; the corresponding transition probabilities matrix
is perturbed using the mentioned techniques and the
optimal policies are characterized in terms of these.
We report the theoretical and practical results.
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2. Preliminary

A stochastic proces$M (n) }n—o.1,... With finite
state spac&€ = {z1, ..., zs} is a Markov chain with
discrete time, if for allh € N and allwy, ..., w, € Z

P (M(0) = wo, M (1) =w1,...,M(n) =w,) =

P(M(0) = wo) (i, i—1),

wherey(i,i —1) = I P(M(i) = w; | M(i —1) =
wi—1)

Consider a Markov chain witht stateszy, ..., zg
where, in each stage= 1, 2, .. ., the analyst should
made a decisionl, among¢ possible. Denote by
z(n) = z; andd(n) = dj the state and the decision
made in stage respectively, then the systems moves
at the next stagey + 1, into the state;; with perhaps,
an unknown probability given by

of =P lz(n+1) =z | 2(n) =2, d(n) = di].
When the transition occurs, it is followed by the re-
ward rf;, and the payoff at state; after the deci-
sion dj, is made is given by)F = Zle o .
Since we assume that for every poliéyk,, .. .ks),

the corresponding Markov chain is ergodic, then, the
steady state probabilities of this chain are given by
¢V =lim,_P [Z(n) = z], i=1,...,5,and the
problem is to find a policy for which the expected
payoff

S
07 ="l (1)
=1

iS maximum.

When the model involves an infinite horizon, the LP
can be used to optimize (1), i.e., if the termination
stage is unknown, usually the problem is described by
an infinite planning horizon where the numhat of
stages is considered infinite. In this case the optimal
policy is constant over stages and the objective func-
tion is given by

S

9" = o,

i=1

(2)

where ¢? is the limiting state probability under the
policy ¥ (i.e., when the policy is kept constant over an

s
max ) ., 25:1 riad

Subject to
€ d S € d.d ®)
Dodm1 TG T D joy 2age 95 =0,

s
Diet 25:1 xzd =

1, z¢ >0,

whered is optimal in state if and only if xgl from the
optimal solution is strictly positive, and the! are the
unconditional steady-state probabilities that the sys-
tem is in the stateé and decisionl is made.

A replacement policy is a specification of a sequence
of “keep” or “replace” actions, one for each period.
An optimal policy is a policy that achieves the greatest
reward (or the smallest total net cost) of ownership
over the entire planning horizon. In Pérez et al. (2006)
is demonstrated that the problem (3) has a degenerate
solution.

3. Theapproximations method

In this section we discuss the following question:
given the Markov chain of the problem (2), which is
optimized using LP, ¢ how affects to the optimal policy
of the chain a perturbation on the optimal solution of
the LP problem?.

To begin this discussion, consider the general LP pro-
blem:

minimize f(z) = ¢tz
subjectto Az =96, £ >0, Apxn,
c,x €R", § e R™

(4)

The numbep of basic feasible solutions that the pro-
blem has, is less than or equal(th), andB,,, ., (sub-
matrix of A) is a feasible basis of the LP model if
BeS,whereS={B,cA:B'5 >0}

Supposes is perturbed to a matri, that is the transi-
tion probability matrix of am: finite state, irreducible,
homogeneous Markov chain as well. Denoting the sta-
tionary distribution vector of3 by z*, and of 3 by Z,

the goal is to describe the changélz = (z* — ) in

the stationary distribution in terms of the changks
using an approximations method. In this senseand

104

infinit number of stages). This criterion maximizesthe < Satisfy the systems
average net revenues per stage. Thus, the LP problem

associated to the chain is (Kristensen 1996). *B=z* 2*>0,
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and
iB=% ©>0, Ze=1

wheree is the column vector of all ones.

The approximations method used can be described as

follows. Given a basi®3 € S, we difference the ma-
trix equationBx = b, and obtaindBx + Bdx = 0,
ie.,dr = —-B ldBz.

Let d;; € dB be the perturbation oh;; € B, and
z* an optimal solution of the problem (4). Defining
f* = f(x*) = cfz* « min, the resulting perturbation
b;; € B can be written as

bij = bij + dij, (5)

and therefore,
T =a"+dx, (6)

constitutes a perturbated solution around:6f Thus,

f=1@) = f+cdu, (7)

is a new solution, not necessarily feasible (sinte=

0+ Adz) of the problem (4) evaluated in the perturbed
point . This is also an approximate solution to the
modified problem

minimize f(z) = ¢tz

subjectto Az =08, z > 0, Apxn, (8)
c,x €R", § e R™

whereA is the resulting matrix after incorporating the
perturbations/;; in B. LetZ be an optimal solution of
the problem (8), then we can write

T=%+4+¢e ec€R" (9)
and there holds

f=f@)=f+ce, (10)
The quantitiesi+¢ and, f+ ¢! e can be viewed as ap-
proximations taz and f respectively, and is an error
measure of the approximation. Naturally, we would
want an error zero.

To evaluate the existent relationships among the
guantity and the matri¥3 we use the Frobenius norm
|| - ||= of dB, and the Euclidian norm of defined as

105

| dB ||% = Trace(dB'dB),
and

lel? = (@ —2)"(z—2)

3.1. Perturbation bounds

The norm perturbation bound used in this section is of
the following form (Schweitzer 1968)

[a" =2 <[ Z[loo [1dB [0, (12)
where|| z* — Z ||; is the 1-norm of the vectar* —
defined as the absolute entry suling || is the co-
norm of the matrixy defined as the maximum abso-
lute row sum, and” is the fundamental matrix asso-
ciated to the matriX3. Z has the form

1

Z=[I-B+e()] ", (13)

Likewise, the stationary distribution vectar, of the
perturbed matrixi3 can be expressed in terms :of
and the fundamental matriX as (Kemeny and Snell
1960)

(x* —2)'=3"'dBZ (14)

Using (14) we can now formalize an important result
that relates tgf andz with f*.

Pre multiplying both sides of (14) bywe have

da*—cti=cZ2taBtz

or
—cde =t 7Bt
i.e.,
fr—f=c7aB'z
equivalently
f=r—cztdBtz, (15)
using (10) we have finally
f=f =7 dB' s + ], (16)
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3.2. TheLP modé of d;; 202v6m + 202y7,, + 202y8,, + 202y9,, — 2008,

To evaluate the permissible maximum value for
each perturbation, we propose the alternative LP pro-
blem Yim + Y1r — Bm = O, Yom + Yor — O-7Oy1m = O,

Y3m + Yar — 0.75Y2m = 0, yam + Yar — 0.8y3m =0,
m F Usr — 0.8Y4m = 0, Yom + Y6r — 0.8y5m = 0,
Maximize (p(d) = {de : —BdBdz < :L'*} , (17) zim 4 zir _ 0.832771 =0, zZm 4 zZr _ 0'7?;;7771 =0,
wheree € RS, ¢ is the number of elements of the Yom +Yor — 0.75Ysm = 0, By + Bin — y1r — Y2r—
matrix 5 that will be perturbed, and = d;; is the O A
perturbations vector. If the problem (4) has an opti- 0:25zi: - Oég;zlm B yj:“; 0, 'B:‘:‘L"f B '+yy61’:n+
mal solution, then, the problem (12) also has an opti- Yo + Y3m + Yam + Usm + Yom + Yrm + Ysmt-
mal solution because the inequality allows to slackthe g 1. + o, + Y3 + Yar + Y5 + Yor + Yot
constrains. Ysr + Yor = 1

) ) o Yim, Y2m, Y3ms Yam, Ysm, Y6ms Yrm, Yem, Yom = 0,
In this sense, an important problem for this kind of  , vo va var, s, Yor, Yrrs Yses Yor, B > 0.

perturbations consists on finding a feasible region
for the perturbed basi. To solve this, we define  The optimal solution and the basic variables of

subject to

the functionsg(dz;) = —CtBi‘lde*, i=1...,p. the inverse basis are (presented in ordes), =
Then, a feasible region fd8 is given by 0.2106, y1,, = 0.2106,y2, = 0.1474,y3, =
0.1105, Y4, = 0.08847,y5,, = 0.07078, Y6 =
o = {d;; € g(dzy,) : 0.05662, y7,, = 0.04529, yg,, = 0.03397, yg9p, =

g(dzy) < g(dz;), i=1,2...,p}, (18) 0.02548, 519 = 0. The optimal objective func-

tion is f* = 163.7765. The basis B that
will be perturbed is formed by the columns:

Yims Y2ms Y3m> Yams Ysms Y6ms Y7m> Ys8ms Yoms Bm»10

where the basi$; used to evaluateg(dzy) is that on
which the perturbation will be made.

. and
4. Numerical example
. . . I 2 _ 2 2 2
Consider the following transition probabilities |l B ||F—2 (d21 —1) 42'(d32 -1) 42'(d43 —-1) 1
matrices reported in Pla et al. (2003), which represent  (ds4 — 1)2 + (265 - 12) + (2d76 —21) +2(d87 - 1)*+
a markovian decision process wifh = 2: (298 - 12) + d3y + dsp + diz + diy + dgs + d7g +
dg7 + dgg.
0 1 0 0 0 0 0 0 0 0
0.30 0 0.70 0 0 0 0 0 0 0 9
0.25 0 0 0.75 0 0 0 0 0 0 I 1 1
PO S SO S R Note that the convex functioff dB |3 achieves its
0.20 0 0 0 0 0.80 0 0 0 0 i 1 L S > —
020 00 0 0 S o0 0 0 m|n|munl mdij = 0.5,_z _.2,...,9,3 =1,...,8,
0.20 0 0 0 0 0 0 0.80 0 0 = —
920 0 0 0 0 0 0 080 0 0 and|| dB* || = 2. In this point,|| € ||= 0.7280.
0.25 0 0 0 0 0 0 0 0 0.75
0 0 o 0 o 0 o o o0 By (12) we have| Z [|eo= 25.8248, || dB ||oc= 4,
d =1 (m = keep) and|| z* — Z ||;= 0.9993
O S S S Usingz as the optimal solution of the LP problem, the
1 0 0 0O O O O O O O 0B ~ -1 i i
oy o0 000 000 perturbed solutio ~ x* — B~ dBx is given by
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 5
Lo 0 000 0 0 00 m A~ 0.2106 — 0.1741d9 — 0.1729d35 — 0.1124ds3 — 0.0763d54
S S S —0.0530dg5 — 0.0344d76 — 0.0208dg7 — 0.0095dgs;
Y1m ~ 0.2106 — 0.1741da; — 0.1729d32 — 0.1124d43 — 0.0763d54
d =2 (r = replace) —0.0530dg5 — 0.0344d76 — 0.0208dg7 — 0.0095dgs;
fam A 0.1474 4 0.0886d21 — 0.1210d32 — 0.0787da3 — 0.0534ds4
The corresponding LP problem is to maximize the ob- ~ —0.0371des — 0.0241d7g — 0.0146ds7 — 0.0066dos;
o ) . _ G3m ~ 0.1105 + 0.0665d5; + 0.1198d35 — 0.0591d43 — 0.0401ds4
jective functionf (y) given by*: —0.0278dg5 — 0.0180d76 — 0.0109ds7 — 0.0050dgs
Gam ~ 0.0884 + 0.0532d5; + 0.0958d35 + 0.1000d43 — 0.0320d54
190y1m + 226y2m + 232y3m + 202y4s, + 202y5:, + ~0.0222dg5 — 0.0144d76 — 0.0087ds7 — 0.0039dos

1 . . Jsm ~ 0.0707 4 0.0425d21 + 0.0766d32 + 0.0800d43 + 0.0848d54
The cost coefficients are arbitrary. —0.0178dgs — 0.0115d7g — 0.0070dg7 — 0.0032dog
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400.0000 —

Yem ~ 0.0566 + 0.0341d21 + 0.0612d32 + 0.0641d43 + 0.0678d54 .

10.0741dgs — 0.0092d76 — 0.0056dg7 — 0.0025dgs f

Grm 2 0.0452 + 0.0271da1 + 0.0490d32 + 0.0512d43 + 0.0542d54

10.0593dg5 + 0.0632d76 — 0.0044ds7 — 0.0020dgg . H

Gsm = 0.0339 + 0.0204d21 + 0.0368d32 + 0.0384d43 + 0.0407ds54 :
10.0444dg5 + 0.0474d7g + 0.0532dg7 — 0.0015dgg /

fom = 0.0254 + 0.0153da1 + 0.0275d35 + 0.0288d43 + 0.0304d54

+0.0333dg5 + 0.0356d76 + 0.0399dg7 + 0.0440dos

Value

200.0000—

S10 ~ 0.9400
f*
For the previously developed system we use the J
perturbations:dy; = 0.20,dzs = 0.20,ds3 =
0.12,ds4 = 0.14,dgs = 0.18,d7¢ = 0.10,dg7 =
0.15,dyg = 0.20; and from these, we obtaifi = 0 0w 0 0w 0 S0 @0 0 w0 9o 10

Diferentials dij
184.9326, c'dx = 21.2314. o
o . . Fig 1: Functionsf™, f andf generated from the proposég}
Similarly, the optimal solutionz of the per-

turbed problem is: (B,, = 0.3062,y1,, =
0.3062, yom = 0.1531,y3m = 0.0842,y4m =
0.0572 = 0.0377 = 0.0234
_’y56”0164 _ 0 (’)ggg _ 0 0054’ —0.0532d1 — 0.0958d33 — 0.1dys + 0.0320ds4
Ym = U ' Y8m = U 1 Yom = U ) +0.0222dg5 + 0.0144d76 + 0.0087dsg7 + 0.0039dgs
and f = 142.6643. Using (9) we get thes value <0.0884
- 0 B B . ~0.0425d21 — 0.0766d32 — 0.0800d43 — 0.0848d54
defined as:(—0.0160, —0.0160, —0.0303, —0.0112, 40.01784ds + 0.0115da6 + 0.0070dg7 + 0.0032dos
—0.0019,0.0062,0.0141,0.0160, 0.0179,0.0103), < 0.0707
and the inner product’s = —42.2814. Note that —0.0341da1 — 0.0612d32 — 0.0641d43 — 0.0678d54
) . —0.0741dgs + 0.0092d76 + 0.0056dg7 + 0.0025dog
these values satisfy the equations (6), (7), (9) y (10). < 0.0566
i _ —0.0271d21 — 0.0490d32 — 0.0512d43 — 0.0542d54
The Frobenius norm, theé — z* norm, thes error and —0.0593dg5 — 0.0632d7¢ + 0.0044dg7 + 0.0020dgg
other parameters were evaluated for different values of < 0.0452
. , , ~0.0204d271 — 0.0368d32 — 0.0384d43 — 0.0407d54
d;j (usingd;; = dg;,i = 2,...,9, 5 =1,...,8).In —0.0444dgs5 — 0.0474d76 — 0.0532ds7 + 0.0015dgg
table 1 we summarize our findings and figure 1 sketch <0.0399
h ical its. Table 2 sh th s of 20.0153d21 — 0.0275d32 — 0.0288d43 — 0.0304d54
€ numerical results. lable 2 snows the samples 0 ~0.0333dg5 — 0.0356d76 — 0.0399ds7 — 0.04407dgs
z*, dx ande? for the proposed,;. <0.0254, 0<d;; <1,i=2,...,9, j=1,...,8
diy [ WdB0r [ [a—z || el | 7 ] _ o
0 0 0 0.4704 | 163.7765| 95.1337 which solution isdy; = 0.1222, d3o = 0.0407, dy3 =
01| 25612 0.1148 | 0.5219 | 177.2500| 102.0440 - B N o B
02| 23323 | 02296 | 05842 190.7235| 109.6893 0.3672,dsq = 1,des = 1,d76 = 1,dg7 = 1,dgs =
0.3 | 2.1540 0.3443 | 0.6337 | 204.1971| 240.1141 1,p(d*) = 5.5302. The corresponding Frobenius
0.4 | 2.0396 0.4591 | 0.6841 | 217.6704| 265.7273 : _ -
0.5 2 0.5739 | 0.7280 | 231.1442| 291.1452 normis|| dB ||r = 2.6912, and|| € ||= 0.8688.
0.6 | 2.0396 0.6887 | 0.7633 | 244.6177| 315.0898
0.7 | 2.1540 0.8035 | 0.7904 | 258.0910| 335.7125 _
0.8 | 23323 0.9183 | 0.8140 | 271.5647| 351.2073 5. Conclusion
09 | 25612 1.0330 | 0.8423 | 285.0382| 360.8219
1.0 ] 28284 | 11478 | 0.8835] 298.5116] 3654715 The approximations method is a good alternative

to evaluate the sensitivity of the optimal solution in

a markovian decision process. The norm perturbation
bound associated to the fundamental matrix is a mea-
sure of the error made when changing the values of the

Table 1: Comparative aspects of the propodgd
Let us consider the linear programming mod-
el defined in (12). In our example it become

maximize= doj+dso+ds3+dss+des+dre+dgr+dos

Subject to transition probabilities matrix. This method is promis-
0.1741da1 + 0.1729d32 + 0.1124d43 + 0.0763d54 Ing when e_valu_atmg the changes in the entrances of
+0.0344d76 + 0.0208dg7 + 0.0095dgg < 0.2106 it, but considering now that these can be represented
—0.0886d21 + 0.1210d32 + 0.0787d43 + 0.0534d54 ; ; ; ; ; ;

0,037 1dog 4 0.0180d0 1+ 0.0109d0, + 0.0050d.s like proba_lbllty density functions making the pertinent
<0.1474 changes in the used norms.

—0.0665d21 — 0.1198d32 + 0.0591d43 + 0.0401d54
+0.0278dgs5 + 0.0180d76 + 0.0109dg7 + 0.0050d9s
< 0.1105
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dij Bm Yim Yom Y3m Yam Ysm. Y6m. Yrm Ys8m. Yom,
T 0.5 0.5 0 0 0 0 0 0 0 0
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dx 0 0 0 0 0 0 0 0 0 0
g2 0.0837 0.0837 0.0217 0.0122 | 0.0078 | 0.0049 | 0.0032 | 0.0020 | 0.0011 | 0.0006
0.1 z 0.4736 0.4736 0.0473 0.0047 | 0.0004 0 0 0 0 0
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dxr | —0.0653 | —0.0653 | —0.0247 | 0.0025 | 0.0167 | 0.0244 | 0.0284 | 0.0297 | 0.0280 | 0.0255
g2 0.1078 0.1078 0.0056 0.0117 | 0.0109 | 0.0090 | 0.0072 | 0.0056 | 0.0038 | 0.0025
02| 0.4444 0.4444 0.0889 0.0178 | 0.0036 | 0.0007 | 0.0001 | 0.0000 0 0
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.1308 | —0.1308 | —0.0494 | 0.0050 | 0.0335 | 0.0489 | 0.0568 | 0.0596 | 0.0560 | 0.0511
g2 0.1329 0.1329 0.0001 0.0096 | 0.0140 | 0.0141 | 0.0128 | 0.0110 | 0.0081 | 0.0058
03| z 0.4118 0.4118 0.1235 0.0371 | 0.0111 | 0.0033 | 0.0010 | 0.0003 | 0.0001 0
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.1961 | —0.1961 | —0.0741 | 0.0076 | 0.0503 | 0.0733 | 0.0852 | 0.0894 | 0.0840 | 0.0766
g2 0.1579 0.1579 0.0025 0.0066 | 0.0163 | 0.0198 | 0.0198 | 0.0080 | 0.0071 | 0.0059
04| & 0.3750 0.3750 0.1500 0.0600 | 0.0240 | 0.0096 | 0.0038 | 0.0015 | 0.0006 | 0.0002
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.07070 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dxr | —0.2615 | —0.2615 | —0.0988 | 0.0100 | 0.0670 | 0.0977 | 0.1136 | 0.1191 | 0.1120 | 0.1021
g2 0.1814 0.1814 0.0102 0.0036 | 0.0172 | 0.0252 | 0.0276 | 0.0079 | 0.0070 | 0.0058
0.5 | & 0.3337 0.3337 0.1668 0.0834 | 0.0417 | 0.0208 | 0.0104 | 0.0052 | 0.0026 | 0.0013
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.3268 | —0.3268 | —0.1235 | 0.0126 | 0.0838 | 0.1222 | 0.1420 | 0.1489 | 0.1400 | 0.1276
g2 0.2025 0.2025 0.0204 0.0015 | 0.0170 | 0.0296 | 0.0354 | 0.0079 | 0.0070 | 0.0058
0.6 | © 0.2877 0.2877 0.1726 0.1036 | 0.0621 | 0.0372 | 0.0223 | 0.0134 | 0.0080 | 0.0048
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.3922 | —0.3922 | —0.1482 | 0.0151 | 0.1005 | 0.1466 | 0.1704 | 0.1787 | 0.1680 | 0.1531
g2 0.2203 0.2203 0.0301 0.0004 | 0.0160 | 0.0324 | 0.0418 | 0.0079 | 0.0070 | 0.0058
0.7 | © 0.2381 0.2381 0.1667 0.1166 | 0.0816 | 0.0571 | 0.0400 | 0.0280 | 0.0196 | 0.0137
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dxr | —0.4576 | —0.4576 | —0.1729 | 0.0176 | 0.1173 | 0.1710 | 0.1988 | 0.2085 | 0.1961 | 0.1786
g2 0.2354 0.2354 0.0369 0.0001 | 0.0153 | 0.0340 | 0.0464 | 0.0079 | 0.0070 | 0.0058
0.8 | © 0.1876 0.1876 0.1501 0.1201 | 0.0960 | 0.0768 | 0.0614 | 0.0491 | 0.0393 | 0.0314
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dxr | —0.5230 | —0.5230 | —0.1976 | 0.0201 | 0.1340 | 0.1955 | 0.2272 | 0.2383 | 0.2241 | 0.2042
g2 0.2500 0.2500 0.0401 0.0001 | 0.0159 | 0.0358 | 0.0494 | 0.0079 | 0.0070 | 0.0058
09 | 0.1403 0.1403 0.1263 0.1136 | 0.1023 | 0.0920 | 0.0828 | 0.0745 | 0.0671 | 0.0604
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dr | —0.5884 | —0.5884 | —0.2223 | 0.0226 | 0.1508 | 0.2199 | 0.2556 | 0.2680 | 0.2521 | 0.2297
g2 0.2684 0.2684 0.0405 0.0003 | 0.0187 | 0.0394 | 0.0526 | 0.0079 | 0.0070 | 0.0058
1 T 0.1000 0.1000 0.1000 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000
x* 0.2106 0.2106 0.1474 0.1105 | 0.0884 | 0.0707 | 0.0566 | 0.0452 | 0.0339 | 0.0254
dxr | —0.6537 | —0.6537 | —0.2471 | 0.0252 | 0.1676 | 0.2444 | 0.2840 | 0.2978 | 0.2801 | 0.2552
g2 0.2950 0.2950 0.0398 0.0012 | 0.0243 | 0.0462 | 0.0579 | 0.0079 | 0.0070 | 0.0058

Table 2: Samples of, 2*, dx ande? for the proposed,;; .
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