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Abstract: Here we present a performance evaluation of three versions of a primal-dual interior point filter line
search method for nonlinear programming. Each entry in the filter relies on three components, the feasibility,
centrality and optimality, that are present in the first-order optimality conditions. The versions differ in a set of
acceptance conditions that are used to consider a trial iterate to be acceptable to the filter. Performance profiles
are used to compare the obtained numerical results in terms of the number of iterations and the number of the
optimality measure evaluations.

Key–Words:Nonlinear optimization, Interior point method, Filter line search method, Performance profiles

1 Introduction
The filter technique of Fletcher and Leyffer [4] is used
to globalize the primal-dual interior point method for
solving a nonlinear constrained optimization problem.
This technique incorporates the concept of nondomi-
nance to build a filter that is able to reject poor trial
iterates and enforce global convergence from arbitrary
starting points. The filter replaces the use of merit
functions, avoiding therefore the update of penalty pa-
rameters that are associated with the penalization of
the constraints in merit functions.

The filter technique has already been adapted to
interior point methods. For example, Ulbrich, Ulbrich
and Vicente in [9] define two components for each en-
try in the filter and use a trust-region strategy. The
two components combine the three criteria of the first-
order optimality conditions: the first component is a
measure of quasi-centrality and the second is an opti-
mality measure combining complementarity and criti-
cality. Global convergence to first-order critical points
is also proved. The filter methods in [1, 11, 12, 13]
rely on a line search strategy and define two compo-
nents for each entry in the filter: the barrier objective
function and the constraints violation. The global con-
vergence is analyzed in [11].

The algorithm herein presented is a primal-dual
interior point method with a line search approach but
considers three components for each entry in the filter.
Primal-dual interior point methods seem adequate to
the filter implementation as the feasibility, centrality
and optimality measures in the first-order optimality

conditions are natural candidates to the components
of the filter. The algorithm also incorporates a restora-
tion phase that aims to improve either feasibility or
centrality. In this paper, a performance evaluation is
also carried out using a benchmarking tool, known as
performance profiles [3], to compare three sets of con-
current trial iterate acceptance conditions.

The paper is organized as follows. Section 2
briefly describes the interior point method and Sec-
tion 3 is devoted to introduce the filter line search
method, including the three sets of acceptance con-
ditions under study. Section 4 describes the numerical
experiments that were carried out in order to define
the performance profiles, and the conclusions make
Section 5.

2 The interior point method

For easy of presentation, we consider the formulation
of a constrained nonlinear optimization problem as
follows:

minx∈Rn F (x)
s.t. h(x) ≥ 0

(1)

wherehi : R
n → R for i = 1, . . . ,m andF : R

n →
R are nonlinear and twice continuously differentiable
functions.

The primal-dual interior point method for solving
(1) uses nonnegative slack variablesw, to transform
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(1) into

minx∈Rn,w∈Rm ϕµ(x,w) ≡ F (x)− µ
m∑

i=1

log(wi)

s.t.h(x)− w = 0,
(2)

whereϕµ(x,w) is the barrier function andµ is a posi-
tive barrier parameter. The first-order KKT conditions
for a minimum of (2) define a nonlinear system ofn+
2m equations inn + 2m unknowns





∇F (x)−AT y = 0
−µW−1e + y = 0
h(x)− w = 0

(3)

where∇F is the gradient vector ofF , A is the Ja-
cobian matrix of the constraintsh, y is the vector of
dual variables,W = diag(wi) is a diagonal matrix,
ande is a m vector of all ones. Applying the New-
ton’s method to solve (3), the following reduced KKT
system

[
−H(x, y) AT

A µ−1W 2

] [
∆x
∆y

]
=

[
σ
π

]
(4)

and
∆w = µ−1W 2 (γw −∆y) , (5)

are obtained to compute the search directions
∆x, ∆w, ∆y, where

H(x, y) = ∇2F (x)−
m∑

i=1

yi∇
2hi(x)

is the Hessian matrix of the Lagrangian function and

σ = ∇F (x)−AT y, π = ρ + µ−1W 2γw,
γw = µW−1e− y, ρ = w − h(x).

Once the search directions have been determined,
the algorithm proceeds iteratively from an initial point
x0, w0 > 0, y0 > 0 choosing a step lengthαk, at each
iteration, and defining a new estimate to the optimal
solution by

xk+1 = xk + αk∆xk

wk+1 = wk + αk∆wk

yk+1 = yk + αk∆yk.

The step lengthαk is chosen to ensure the nonnega-
tivity of slack and dual variables. In the algorithm, the
procedure that decides which trial step size is accepted
is a filter line search method.

Our algorithm is a quasi-Newton based method
in the sense that a symmetric positive definite quasi-
Newton BFGS approximation,Bk, is used to approxi-
mate the Hessian of the LagrangianH, at each itera-
tion k [7].

To computeµ at each iteration, a fraction of the
average complementarity

µ = δµ
wT y

m
(6)

is used, whereδµ ∈ [0, 1). We refer to [8, 10] for
details.

3 Filter line search method

To simplify the notation, we introduce the vectors:

u = (x,w, y), ∆ = (∆x,∆w,∆y),
u1 = (x,w), ∆1 = (∆x,∆w),
u2 = (w, y), ∆2 = (∆w,∆y),
u3 = (x, y), ∆3 = (∆x,∆y).

The methodology of a filter as outline in [4] is
adapted to this interior point method. Three compo-
nents for each entry in the filter are defined. The first
component measures feasibility, the second measures
centrality and the third optimality. Based on the opti-
mality conditions (3) the following measures are used:

θf (u1) = ‖ρ‖
2
, θc(u

2) = ‖γw‖2 , θop(u
3) =

1

2
‖σ‖2

2
.

After a search direction∆k has been computed,
a backtracking line search procedure is implemented,
where a decreasing sequence of step sizes

αk,l ∈ (0, αmax
k ] , l = 0, 1, ...,

with liml αk,l = 0, is tried until a set of acceptance
conditions are satisfied. Here,l denotes the iteration
counter for the inner loop.αmax

k is the longest step
size that can be taken along the direction before vio-
lating the nonnegativity conditionsu2

k ≥ 0. Assuming
that the starting pointu0 satisfiesu2

0 > 0, the maximal
step sizeαmax

k ∈ (0, 1] is defined by

αmax
k = max{α ∈ (0, 1] : u2

k + α∆2
k ≥ (1− ε)u2

k}
(7)

for a fixed parameterε ∈ (0, 1).
In the initial version of the algorithm, the trial

pointuk(αk,l) = uk +αk,l∆k is acceptable by the fil-
ter, if it leads to sufficient progress in one of the three
measures compared to the current iterate,

θf (u1
k(αk,l)) ≤

(
1− γθf

)
θf (u1

k) or
θc(u

2
k(αk,l)) ≤ (1− γθc

) θc(u
2
k) or

θop(u
3
k(αk,l)) ≤ θop(u

3
k)− γθo

θf (u1
k)

(8)

whereγθf
, γθc

, γθo
∈ (0, 1) are fixed constants.
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However, to prevent convergence to a feasible but
nonoptimal point, and whenever for the trial step size
αk,l, the following switching conditions

mk(αk,l) < 0 and
[−mk(αk,l)]

so [αk,l]
1−so > δ

[
θf (u1

k)
]sf and

[−mk(αk,l)]
so [αk,l]

1−so > δ
[
θc(u

2
k)

]sc

(9)
hold, with fixed constantsδ > 0, sf > 1, sc > 1,
so ≥ 1, where

mk(α) = α∇θop(u
3
k)

T ∆3
k,

then the trial point must satisfy the Armijo condition

θop(u
3
k(αk,l)) ≤ θop(u

3
k) + ηomk(αk,l), (10)

instead of (8) to be acceptable. Here,ηo ∈ (0, 0.5) is
a constant.

According to previous publications on filter me-
thods (for example [11]), a trial step sizeαk,l is called
a θop-step if (10) holds. Similarly, if aθop-step is ac-
cepted as the final step sizeαk in iterationk, thenk is
referred to as aθop-type iteration.

In order to prevent cycling between iterates that
improve either the feasibility, or the centrality, or the
optimality, at each iterationk, the algorithm main-
tains a filter that is a setF k that contains values of
θf , θc andθop, that are prohibited for a successful trial
point in iterationk [9, 11, 12, 13]. Thus, a trial point
uk(αk,l) is acceptable, if

(
θf (u1

k(αk,l)), θc(u
2
k(αk,l)), θop(u

3
k(αk,l))

)
/∈ F k.

The filter is initialized to

F 0 ⊆
{
(θf , θc, θop) ∈ R

3 : θf ≥ θmax
f ,

θc ≥ θmax
c , θop ≥ θmax

op

}
,

(11)

for some positive constantsθmax
f , θmax

c andθmax
op , and

is updated using the formula

F k+1 = F k ∪
{
(θf , θc, θop) ∈ R

3 :
θf >

(
1− γθf

)
θf (u1

k) and θc > (1− γθc
) θc(u

2
k)

and θop > θop(u
3
k)− γθo

θfeas(u
1
k)

}

(12)
after every iteration in which the accepted trial step
size satisfies (8). On the other hand, if (9) and (10)
hold for the accepted step size, the filter remains un-
changed.

Whenever the backtracking line search finds a
trial step sizeαk,l that is smaller than a minimum de-
sired step sizeαmin

k (see [2] for details), the algorithm
reverts to a restoration phase. Here, the algorithm tries

to find a new iterateuk+1 that is acceptable to the cur-
rent filter, i.e., condition (8) holds, by decreasing ei-
ther the feasibility or the centrality.

Our interior point filter line search algorithm for
solving constrained optimization problems is as fol-
lows:

Algorithm 1 (interior point filter line search algo-
rithm)

1. Given: Starting point x0, u2
0 > 0, constants

θmax
f ∈ (θf (u1

0),∞]; θmax
c ∈ (θc(u

2
0),∞];

θmax
op ∈ (θop(u

3
0),∞]; γθf

, γθc
, γθo

∈ (0, 1);
δ > 0; sf > 1; sc > 1; so ≥ 1; ηo ∈ (0, 0.5];
εtol ≪ 1; ε ∈ (0, 1); δµ ∈ [0, 1).

2. Initialize. Initialize the filter (using (11)) and the
iteration counterk ← 0.

3. Check convergence. Stop if the relative measures
of primal and dual infeasibility are less or equal
to εtol.

4. Compute search direction. Compute the search
direction∆k from the linear system (4), and (5).

5. Backtracking line search.

5.1 Initialize line search.Compute the longest
step lengthαmax

k using (7) to ensure posi-
tivity of slack and dual variables. Set
αk,l = αmax

k , l← 0.

5.2 Compute new trial point.If the trial step
size becomes too small, i.e.,αk,l < αmin

k ,
go to restoration phase in step 9. Other-
wise, compute the trial pointuk(αk,l) and
recalculateµ using (6).

5.3 Check acceptability to the filter. If(
θf (u1

k(αk,l)), θc(u
2
k(αk,l)), θop(u

3
k(αk,l))

)

∈ F k, reject the trial step size and go to
step 5.6.

5.4 Check sufficient decrease with respect to
current iterate. If αk,l is an θop-step size
((9) holds) and the Armijo condition (10)
for the θop function holds, accept the trial
step and go to step 6.

5.5 Check sufficient decrease with respect to
current iterate.If (8) holds, accept the trial
step and go to step 6. Otherwise go to step
5.6.

5.6 Choose new trial step size. Setαk,l+1 =
αk,l/2, l← l + 1, and go back to step 5.2.

6. Accept trial point. Setαk ← αk,l and uk+1 ←
uk(αk).
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7. Augment the filter if necessary. If k is not an
θop-type iteration, augment the filter using (12).
Otherwise, leave the filter unchanged.

8. Continue with next iteration. Increase the itera-
tion counterk ← k + 1 and go back to step 3.

9. Restoration phase.Use a restoration algorithm
to produce a pointuk+1 that is acceptable to the
filter, i.e.,

(
θf (u1

k+1
), θc(u

2
k+1

), θop(u
3
k+1

)
)

/∈

F k. Augment the filter using (12) and continue
with the regular iteration in step 8.

3.1 Restoration phase
The task of the restoration phase is to compute a new
iterate acceptable to the filter by decreasing either
the feasibility or the centrality, whenever the regular
backtracking line search procedure cannot make suf-
ficient progress and the step size becomes too small.
Thus, new functions are introduced

θ2,f (u1) =
1

2
‖ρ‖2

2
, θ2,c(u

2) =
1

2
‖γw‖

2

2
.

The restoration algorithm works with the steps
∆1 and ∆2, computed from (4) and (5), that are
descent directions forθ2,f (u1) and θ2,c(u

2), respec-
tively.

A sufficient reduction in one of the measures
θ2,f and θ2,c is required for a trial step size to be
acceptable. Additionally, we also ensure that the
value of the optimality measure at the new trial point,
θop(u

3
k (αk,l)), does not deviate too much from the

current value,θop(u
3
k). The reader is referred to [2]

for details.

3.2 Acceptance conditions
The acceptance condition (8) is a natural extension of
the condition in [4], in the sense that a sufficient re-
duction in just one component of the filter is imposed
for a trial iterate to be acceptable. Here, we propose
two other sets of acceptance conditions. They are
overall more restrictive than the original (8) since suf-
ficient progress is required in some cases in two com-
ponents. Based on performance profiles, a compara-
tive study is also carried out to evaluate the efficiency
of these versions of the filter line search method. This
is the main contribution of the paper.

The first set considers the trial pointuk(αk,l) to
be acceptable if it leads to sufficient progress either in
both the feasibility and centrality measures or in the
optimality measure, i.e., if

(
θf (u1

k(αk,l)) ≤
(
1− γθf

)
θf (u1

k) and
θc(u

2
k(αk,l)) ≤ (1− γθc

) θc(u
2
k)

)

or θop(u
3
k(αk,l)) ≤ θop(u

3
k)− γθo

θf (u1
k)

(13)

holds. Thus, a new version of the Algorithm 1 is de-
fined with condition (8) replaced by (13).

The other set of conditions is still more restric-
tive and accepts a trial iterate if sufficient progress is
obtained in any two of the three proposed measures
compared to the current iterate,

(
θf (u1

k(αk,l)) ≤
(
1− γθf

)
θf (u1

k) and
θc(u

2
k(αk,l)) ≤ (1− γθc

) θc(u
2
k)

)

or(
θf (u1

k(αk,l)) ≤
(
1− γθf

)
θf (u1

k) and
θop(u

3
k(αk,l)) ≤ θop(u

3
k)− γθo

θf (u1
k)

)

or(
θc(u

2
k(αk,l)) ≤ (1− γθc

) θc(u
2
k) and

θop(u
3
k(αk,l)) ≤ θop(u

3
k)− γθo

θf (u1
k)

)
.

(14)

In this version of the interior point filter line search
method, condition (14) replaces (8). The original and
these two new versions of the Algorithm 1 are tested
with a well-known set of problems and compared us-
ing the performance profiles.

4 Numerical results
To analyze the performance of the three proposed ver-
sions of the interior point filter line search method
we used111 constrained problems from the Hock and
Schittkowski test set [6]. The tests were done in dou-
ble precision arithmetic with a Pentium 4. The algo-
rithm is coded in the C programming language and
includes an interface to AMPL to read the problems
that are coded in the AMPL modeling language [5].
The chosen values for the constants are:θmax

f =

104 max
{
1, θf (u1

0)
}

, θmax
c = 104 max

{
1, θc(u

2
0)

}
,

θmax
op = 104 max

{
1, θop(u

3
0)

}
, γθf

= γθc
= γθo

=

10−5, δ = 1, sf = 1.1, sc = 1.1, so = 2.3,
ηo = 10−4, εtol = 10−4, δµ = 0.1 andε = 0.95.

Four experiments were carried out with each pro-
posed version. First, with the initial approximation
x0 given in [6], the algorithm recomputes a better ap-
proximation, saỹx0, as well asy0, by solving a sim-
plified reduced KKT (see (4)). Then in the first experi-
ence, the initial matrixB0 is a positive definite modi-
fication of∇2F (x̃0) and in the second experienceB0

is set to the identity matrix.
The other two experiences are based on different

initial primal and dual variables. They use the given
x0 and sety0 = 1. Then, in the third experienceB0 ≈
∇2F (x0), with guaranteed positive definiteness, and
in the fourthB0 = I.

For each version, we combined the results of the
four experiments, selected the best result for each
problem and record the following performance met-
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Figure 1: Performance profiles in alog2 scale: num-
ber of iterations
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Figure 2: Performance profiles in alog2 scale: num-
ber of optimality measure evaluations

rics: number of iterations and number ofθop evalua-
tions.

To evaluate and compare the performance of the
three proposed versions for the interior point filter line
search method we use the performance profiles as out-
line in [3]. These profiles represent the cumulative
distribution function for the performance metrics. A
brief explanation follows.

LetP be the set of problems andC the set of codes
used in the comparative study. Lettp,c be the perfor-
mance metric (for example, the number of iterations)
required to solve problemp by codec. Then, the com-
parison is based on the performance ratios

rp,c =
tp,c

min{tp,c, c ∈ C}
, p ∈ P, c ∈ C

and the overall assessment of the performance of a

particular codec is given by

ρc(τ) =
1

nP

size{p ∈ P : log2(rp,c) ≤ τ}

wherenP is the number of problems in the setP.
Here, we use a log2 scaled of the performance pro-
files. ρc(τ) is the probability (for codec ∈ C) that a
performance ratiorp,c is within a factorτ ∈ R of the
best possible ratio. The functionρc is the cumulative
distribution function for the performance ratio.

To simplify the notation we denote the three ver-
sions by: filter-1 (filter method based on original con-
dition (8); filter-2 (filter method based on the accep-
tance condition (13)); filter-3 (filter based on the ac-
ceptance condition (14)).

Figure 1 shows the performance profiles for the
number of iterations required to solve the problems,
considering the convergence criteria of Algorithm 1,
of the three versions. The figure gives a clear indica-
tion of the relative performance of each code/version.

The value ofρ(τ) for τ ≈ 0 gives the probability
that the code will win over the others in the set. How-
ever, for large values ofτ , theρ(τ) measures the code
robustness. The code with largestρ(τ) is the one that
solves more problems in the setP.

We observe from Figure 1 that on this test set the
performance profile for code filter-1 (original version)
lies above the other two. By examiningρ at the left
side of the plot, one may conclude that filter-1 is the
most efficient, in terms of number of iterations, on al-
most83% of the problems. Observing the other end
of the plot, we conclude that filter-1 solves the most
problems to optimality (approximately93%). The
plots in Figure 1 also show that each of the codes fails
on at least7% of the problems.

Figure 2 shows the performance profiles for the
number ofθop evaluations. Similar conclusions can
be drawn from these profiles.

5 Conclusions
A primal-dual interior point method based on a filter
line search approach is presented. The new approach
defines three components for each entry in the filter:
the feasibility, centrality and optimality. We propose
three different versions for some of the acceptance
conditions for a trial iterate to be acceptable to the fil-
ter.

The versions are tested with a set of well-known
problems and compared using a benchmarking tool
with performance profiles. The used metrics were
the number of iterations and the number of optima-
lity measure evaluations. The numerical results show
that the original filter line search algorithm, based on
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condition (8), is superior in terms of efficiency to the
other versions.

Thus, using more restrictive conditions to con-
sider a trial iterate to be acceptable to the filter than
condition (8), does not seem to be effective as far as
iteration andθop counts are considered. We note that
the performance profiles reflect only the performance
of the tested codes on the data being used, so other test
sets with larger and/or more difficult problems should
be tested.
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