

1

Trace Driven Simulation of GDSF# and Existing Caching Algorithms for

Web Proxy Servers

J B Patil

Department of Computer Engineering,

R. C. Patel Institute of Technology, Shirpur. (M.S.), INDIA

E-mail: jbpatil@hotmail.com

B. V. Pawar

Department of Computer Science

North Maharashtra University, Jalgaon. (M.S.), INDIA

E-mail: bvpawar@hotmail.com

Abstract: - Web proxy caching is used to improve the performance of the Web infrastructure. It aims to reduce

network traffic, server load, and user perceived retrieval delays. The heart of a caching system is its page replacement

policy, which needs to make good replacement decisions when its cache is full and a new document needs to be stored.

The latest and most popular replacement policies like GDSF use the file size, access frequency, and age in the decision

process. The effectiveness of any replacement policy can be evaluated using two metrics: hit ratio (HR) and byte hit

ratio (BHR). There is always a trade-off between HR and BHR [1]. In this paper, using three different proxy server

logs, we use trace driven analysis to evaluate the effects of different replacement policies on the performance of a Web

server. We propose a modification of GDSF policy, GDSF#, which allows augmenting or weakening the impact of

size or frequency or both on HR and BHR. Our simulation results show that our proposed replacement policy GDSF#

gives close to perfect performance in both the important metrics: HR and BHR.

Key-words: - Web caching, Replacement policy, Hit ratio, Byte hit ratio, Trace-driven simulation

1 Introduction
The enormous popularity of the World Wide Web has

caused a tremendous increase in network traffic due to

http requests. This has given rise to problems like user-

perceived latency, Web server overload, and backbone

link congestion. Web caching is one of the ways to

alleviate these problems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Web caches can be deployed throughout the Internet,

from browser caches, through proxy caches and

backbone caches, through reverse proxy caches, to the

Web server caches.

 In our work, we use trace-driven simulation for

evaluating the performance of different caching policies

for Web proxy servers.

 Cao and Irani have surveyed ten different policies

and proposed a new algorithm, Greedy-Dual-Size (GDS)

in [5]. The GDS algorithm uses document size, cost, and

age in the replacement decision, and shows better

performance compared to previous caching algorithms.

In [4] and [12], frequency was incorporated in GDS,

resulting in Greedy-Dual-Frequency-Size (GDSF) and

Greedy-Dual-Frequency (GDF). While GDSF is

attributed to having best hit ratio (HR), it having a

modest byte hit ratio (BHR). Conversely, GDF yields a

best HR at the cost of worst BHR [12].

 In this paper, we propose a new algorithm, called

Greedy-Dual-Frequency-Size# (GDSF#), which allows

augmenting or weakening the impact of size or

frequency or both on HR and BHR. We compare

GDSF# with common algorithms like GDS(1), GDS(P),

GDSF(1), and GDSF(P). Our simulation study shows

that GDSF# gives close to perfect performance in both

the important metrics: HR and BHR.

 The remainder of this paper is organized as follows.

Section 2 introduces GDSF#, a new algorithm for Web

cache replacement. Section 3 describes the simulation

model for the experiment. Section 4 describes the

experimental design of our simulation while Section 5

presents the simulation results. We present our

conclusions in Section 6.

2 GDSF# Algorithm (Our Proposed

Algorithm)
In GDSF, the key value of document i is computed as

follows[4] [12]:

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 378

2

 The Inflation Factor L is updated for every evicted

document i to the priority of this document i. In this

way, L increases monotonically. However, the rate of

increase is very slow. If a faster mechanism for

increasing L is designed, it will lead to a replacement

algorithm with features closure to LRU. We can apply

similar reasoning to si and fi. If we augment the

frequency by using , ,…, etc. instead of then the

impact of frequency is more pronounced than that of

size. Similarly, if we use , ,…, etc. or use

log(si) instead of file size si , then the impact of size is

less than that of frequency [4].

Extending this logic further, we propose an extension to

the GDSF, called GDSF#, where the key value of

document is computed as

where λ and δ are rational numbers. If we set λ or δ

above 1, it augments the role of the corresponding

parameter. Conversely, if we set λ or δ below 1, it

weakens the role of the corresponding parameter.

 Therefore, we present the GDSF# algorithm as

shown below:

begin

Initialize L = 0

Process each request document in turn:

let current requested document be i

if i is already in cache

else

while there is not enough room in cache for p

begin

let L = min(), for all i in cache

evict i such that = L

end

load i into cache

end

3 Simulation Model for the Experiment
In case of proxy servers, all requests are assumed to be

directed to the proxy server. When the proxy receives a

request from a client, it checks its cache to see if it has a

copy of the requested object. If there is a copy of the

requested object in its cache, the object is returned to the

client signifying a cache hit, otherwise the proxy records

a cache miss. The original Web server is contacted and

on getting the object, stores the copy in its cache for

future use, and returns a copy to the requesting user. If

the cache is already full when a document needs to be

stored, then a replacement policy is invoked to decide

which document (or documents) is to be removed.

3.1 Workload Traces
For Web proxy servers, we have used: Boston

University Computer Science Department client traces

collected in 1995; BU272 and BU-B19 [13] and one

trace collected in 1998; BU98 [14] [15].

4. Experimental Design
This section describes the design of the performance

study of cache replacement policies. The discussion

begins with the factors and levels used for the

simulation. Next, we present the performance metrics

used to evaluate the performance of each replacement

policy used in the study. Lastly, we discuss other design

issues regarding the simulation study.

4.1 Factors and Levels
There are two main factors used in the in the trace-

driven simulation experiments: cache size and cache

replacement policy. This section describes each of these

factors and the associated levels.

4.1.1 Cache Size

The first factor in this study is the size of the cache. For

the proxy logs, we have used ten levels from 1 MB to

1024 MB except in case of BU-B19 trace, we have a

upper bound of 4096 MB. The upper bounds of cache

size are chosen to represent an infinite cache size for the

respective traces. An infinite cache is one that is so large

that no file in the given trace, once brought into the

cache, need ever be evicted. It allows us to determine the

maximum achievable cache hit ratio and byte hit ratio,

and to determine the performance of a smaller cache size

to be compared to that of an infinite cache.

4.1.2 Replacement Policy

In our research, we examine the following previously

proposed replacement policies: GDS(1), GDS(P),

GDSF(1), and GDSF(P). Our proposed policy GDSF# is

also examined and evaluated against these policies.

Greedy-Dual-Size (GDS): GDS [5] maintains for each

object a characteristic value Hi. A request for object i

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 379

3

(new request or hit) requires a recalculation of Hi. Hi is

calculated as

L is a running aging factor, which is initialized to zero, ci

is the cost to fetch object i from its origin server, and si

is the size of object i. GDS chooses the object with the

smallest Hi-value. The value of this object is assigned to

L. if cost is set to 1, it becomes GDS(1), and when cost

is set to p = 2 + size/536, it becomes GDS(P).

Greedy-Dual-Size-Frequency (GDSF): GDSF [4] [12]

calculates Hi as

It takes into account frequency of reference in addition

to size. Similar to GDS, we have GDSF(1) and

GDSF(P).

4.2 Performance Metrics
The performance metrics used to evaluate the various

replacement policies used in this simulation are Hit Rate

and Byte Hit Rate.

Hit Rate (HR) Hit rate (HR) is the ratio of the number

of requests met in the cache to the total number of

requests.

Byte Hit Rate (BHR) Byte hit rate (BHR) is concerned

with how many bytes are saved. This is the ratio of the

number of bytes satisfied from the cache to the total

bytes requested.

5 Simulation Results
This section presents the simulation results for

comparison of different file caching strategies.

Section 5.1 gives the simulation results for the GDSF#

algorithm. Section 5.2 shows the results for proxy

servers.

 We show the simulation results of GDS(1), GDS(P),

GDSF(1), GDSF(P), GDSF#(1), and GDSF#(P) for the

proxy server traces for hit rate and byte hit rate. The

graph for Infinite indicates the performance for the

Infinite cache size.

5.1 Simulation Results for GDSF# Algorithm
In this section, we experiment with the various values of

λ and δ in the equation for computing key value,

to augment or weaken the impact of frequency and size

in GDSF#.

5.1.1 Effect of Augmenting Frequency in GDSF#

If we add frequency in the GDS to make it GDSF, it

improves BHR considerably and HR slightly. To check

whether we can further improve the performance, we

set λ = 2, 5, 10 with δ = 1 in the equation for Hi.

Figures 1a and 1b show a comparison of GDSF(1) and

GDSF#(1) with λ = 2, 5, 10 with δ = 1 for the BU272

Web proxy trace.

Fig. 1a: HR for GDSF# algorithm for BU272 trace

(λ=2, 5, 10)

Fig. 1b: BHR for GDSF# algorithm for BU272 trace

(λ=2, 5, 10)

 The results indicate that augmenting frequency in

GDSF# improves BHR in all the three traces but the

improvement comes at the cost of HR. Again, we find

that with λ = 2, we get the best results for BHR. We get

the similar results for the remaining two traces.

5.1.2 Effect of De-Augmenting Size in GDSF#

We have seen that emphasizing frequency in GDSF#

results in improved BHR. Now let us check the effect of

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 380

4

de-augmenting or weakening the size. For this, we set δ

= 0.3, 0.6, 0.9 with λ = 1 in the equation for Hi. Figures

2a and 2b show a comparison of GDSF(1) and

GDSF#(1) with δ = 0.3, 0.6, 0.9 with λ = 1 for the

BU272 Web proxy trace.

Fig. 2a: HR for GDSF# algorithm for BU272 trace

(δ=0.3, 0.6, 0.9)

Fig. 2b: BHR for GDSF# algorithm for BU272 trace

(δ=0.3, 0.6, 0.9)

 The results are on expected lines. The effect of

decreased impact of file size improves BHR across all

the three traces. Again, it is at the cost of HR.

Specifically, we get best BHR at δ = 0.3, and best HR at

δ = 0.9.

5.1.3 Effect of Augmenting Frequency & De-

Augmenting Size in GDSF#

We have seen that emphasizing frequency and de-

emphasizing size in GDSF# results in improved BHR, at

the cost of slight reduction in HR. Now the question is

then whether we can achieve still better results by

combination of both augmenting frequency and de-

augmenting size. For this, we try different combinations

of λ and δ. We find that we get best results for both HR

and BHR for the combination λ = 2 and δ = 0.9 for all

the six Web traces. This combination shows close to

perfect performance for both the important metrics: HR

and BHR.

 This is important result because as noted earlier, there

is always a trade-off between HR and BHR [2].

Replacement policies that try to improve HR do so at the

cost of BHR, and vice versa [5]. Often, a high HR is

preferable because it allows a greater number of requests

to be serviced out of cache and thereby minimizing the

average request latency as perceived by the user.

However, it is also desirable to maximize BHR to

minimize disk accesses or outward network traffic.

In the next sections, we use the best combination of λ =

2 and δ = 0.9 in the equation for Hi for GDSF# to

compare the performance of GDSF# with GDS(1),

GDS(P), GDSF(1), and GDSF(P). So, instead of

denoting it as GDSF#(λ=2, δ=0.9), we will denote it as

simply GDSF#. For the cost = 1, it will be denoted as

GDSF#(1), and for packet cost (p = 2 + size/536), it will

be denoted as GDSF#(P).

5.2 Simulation Results for Web Proxy Servers
In this section, we present and discuss simulation results

for BU272, BU-B19, and BU98 Web proxy servers.

5.2.1 Simulation Results for BU272

Figures 3a and 3b give the comparison of GDSF# with

other algorithms.

Fig. 3a: Hit rate of BU272 trace

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 381

5

Fig. 3b: Byte Hit rate of BU272 trace

 The results indicate that the HR achieved with an

infinite sized cache is 42.23% while the BHR is 30.92%

for the BU272 trace. Of the algorithms shown in Figure

3, GDSF(1) had the highest HR followed by GDSF#(1).

GDS(1) and GDS(P) had a significantly lower HRs.

In case of BHRs, GDSF(P), and GDSF#(P) had the

highest BHRs. However, GDSF# is optimized for both

HR and BHR in case of BU272 trace.

5.2.2 Simulation Results for BU-B19

Figures 4a and 4b show the performance graphically.

Fig. 4a: Hit rate of BU-B19 trace

 The results indicate that the HR achieved with an

infinite sized cache is 67.14% while the BHR is 48.21%

for the BU-B19 trace. Of the algorithms shown in Figure

4, GDSF(1) had the highest HR followed by GDSF#(1).

GDS(1) and GDS(P) had a lower HRs.

 In case of BHRs, GDSF#(P) had the highest BHR

followed by GDSF(P). GDSF# is optimized for both HR

and BHR in case of BU-B19 trace.

Fig. 4b: Byte Hit rate of BU-B19 trace

5.2.3 Simulation Results for BU98

Figures 5a and 5b show the performance graphically.

Fig. 5a: Hit rate of BU98 trace

Fig. 5b: Byte Hit rate of BU98 trace

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 382

6

 The results indicate that the HR achieved with an

infinite sized cache is 35.61% while the BHR is 35.81%

for the BU98 trace. Of the algorithms shown in Figure 5,

GDSF#(1) had the highest HR followed by GDSF(1).

GDS(1) and GDS(P) had a considerably lower HRs.

In case of BHRs, GDSF#(P) had the highest BHR

followed by GDSF(P). However, like we noted earlier,

GDSF# scores over all other algorithms in its optimized

HR and BHR in case of BU-98 trace.

6. Conclusions
In this paper, we proposed a Web cache algorithm called

GDSF#, which tries to maximize both HR and BHR. It

incorporates the most important parameters of the Web

traces: size, frequency of access, and age (using inflation

value, L) in a simple way.

 We have compared GDSF# with some popular cache

replacement policies for Web proxy servers using a

trace-driven simulation approach. We conducted several

experiments using three proxy server traces. The

replacement policies examined were GDS(1), GDS(P),

GDSF(1), GDSF(P), GDSF#(1), and GDSF#(P). We

used metrics like Hit Ratio (HR) and Byte Hit Ratio

(BHR) to measure and compare performance of these

algorithms. Our experimental results show that:

1. The HRs for Web proxy servers range from 35 to

68%, while BHRs range from 30 to 48% for the infinite

caches. The values are consistent with the values

reported in the literature [4] [5] [12] [16] [17] [18].

2. The results also indicate that it is more difficult to

achieve high BHRs than high HRs. For example, in all

the three traces, the maximum BHR is always less than

maximum HR.

3. The results are consistent across all the three traces.

GDSF# and GDSF show the best HR and BHR

significantly outperforming other algorithms for these

metrics.

4. Replacement policies emphasizing the document size

yield better HR, but typically show poor BHR. The

explanation is that in size-based policies, large files are

always the potential candidates for the eviction, and the

inflation factor is advanced very slowly, so that even if a

large file is accessed on a regular basis, it is likely to be

evicted repeatedly. GDSF and GDSF# use frequency as

a parameter in its decision-making, so popular large files

have better chance of staying in a cache. In addition, the

inflation or ageing factor, L is now advanced faster.

GDSF and GDSF# shows substantially improved BHR

across all traces.

5. Similarly, replacement policies giving importance to

frequency yield better BHR because they do not

discriminate against the large files. These policies also

retain popular objects (both small and large) longer than

recency-based policies like LRU. However, normally

these policies show poor HR because these policies do

not take into account the file size which results in a

higher file miss penalty.

6. We analyzed the performance of GDSF# policy,

which allows augmenting or weakening the impact of

size or frequency or both on HR and BHR. Our results

show that our proposed replacement policy gives close

to perfect performance in both the important metrics:

HR and BHR.

References:

[1] M. Arlitt, R. Friedrich, and T. Jin, “Workload

Characterization of Web Proxy Cache Replacement

Policies”, ACM SIGMETRICS Performance Evaluation

Review, August 1999.

[2] M. Abrams, C. R. Standridge, G. Abdulla, S.

Williams, and E. A. Fox, “Caching Proxies: Limitations

and Potentials”, Proceedings of the 4
th
 International

World Wide Web Conference, Boston, MA, December

1995, pp. 119-133.

[3] M. Arlitt and C. Williamson, “Trace Driven

Simulation of Document Caching Strategies for Internet

Web Servers”, Simulation Journal, Vol. 68, No. 1,

January 1977, pp. 23-33.

[4] L. Cherkasova, “Improving WWW Proxies

Performance with Greedy-Dual-Size-Frequency Caching

Policy”, HP Technical Report HPL-98-69(R.1),

November 1998.

[5] P. Cao and S. Irani, “Cost-Aware WWW Proxy

Caching Algorithms”, Proceedings of the USENIX

Symposium on Internet Technology and Systems,

December 1997, pp. 193-206.

[6] S. Jin and A. Bestavros, “GreedyDual*: Web

Caching Algorithms Exploiting the Two Sources of

Temporal Locality in Web Request Streams”,

Proceedings of the 5
th
 International Web Caching and

Content Delivery Workshop, 2000.

[7] S. Podlipnig and L. Boszormenyi, “A Survey of Web

Cache Replacement Strategies”, ACM Computing

Surveys, Vol. 35, No. 4, December 2003, pp. 374-398.

[8] L. Rizzo, and L. Vicisano, “Replacement Policies for

a Proxy Cache”, IEEE/ACM Transactions on

Networking, Vol. 8, No. 2, April 2000, pp. 158-170.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 383

7

[9] A. Vakali, “LRU-based Algorithms for Web Cache

Replacement”, International Conference on Electronic

Commerce and Web Technologies, Lecture Notes in

Computer Science, Vol. 1875, Springer-Verlag, Berlin,

Germany, 2000, pp. 409-418.

[10] R. P. Wooster and M. Abrams., “Proxy Caching

that Estimates Page Load Delays”, Proceedings of the

6
th
 International World Wide Web Conference, Santa

Clara, CA, April 1997, pp. 325-334.

[11] S. Williams, M. Abrams, C. R. Standridge, G.

Abdulla, and E. A. Fox, “Removal Policies in Network

Caches for World-Wide-Web Documents”, Proceedings

of ACM SIGCOMM, Stanford, CA, 1996, Revised

March 1997, pp. 293-305.

[12] M. F., Arlitt, L. Cherkasova, J. Dilley, R. J.

Friedrich, and T. Y Jin, “Evaluating Content

Management Techniques for Web Proxy Caches”, ACM

SIGMETRICS Performance Evaluation Review, Vol. 27,

No. 4, March 2000, pp. 3-11.

[13] C. R. Kunha, A. Bestavros, & M. E. Crovella,

“Characteristics of WWW Client-based Traces”,

Technical Report, BU-CS-95-010, Computer Science

Department, Boston University, 1995.

[14] A. Bradley, “BU Computer Science 1998 Proxy

Trace”, Technical Report, Computer Science

Department, Boston University, 1999.

[15] P. Barford, A. Bestavros, A. Bradley, & M.

Crovella, “Changes in Web Client Access Patterns

Characteristics and Caching Implications”, World Wide

Web, Vol. 2, No. 1-2, 1999.

[16] M. Arlitt, R. Friedrich, & T. Jin, “Performance

Evaluation of Web Proxy Cache in a Cable Modem

Environment”, HP Technical Report, HPL-98-97(R.1),

Palo Alto, 1998.

[17] M. Abrams, C. R. Standridge, G. Abdulla, S.

Williams, & E. A. Fox, “Caching Proxies: Limitations

and Potentials”, Proceedings of the 4
th
 International

World Wide Web Conf., Boston, MA, 1995, pp. 119-133.

[18] H. Bahn, K. Koh, S. H. Noh, & S. L. Min,

“Efficient Replacement of Nonuniform Objects in Web

Caches”, IEEE Computer, Vol. 35, No. 6, 2002, pp. 65-

73.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 384

