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A comparison of magnetostatic field calculations
associated with thick solenoids in the presence of iron
using an integral formula derived in terms of the
quaternion variable and a Maclaurin series solution.
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Abstract- The effect of iron on the uniformity of the field produced by an axisymmetric thick solenoid is
considered. Using an integral equation derived for brevity using the quaternion variable of Hamilton the
components of the magnetic induction are computed. The solution to the vector potential and field
components is also achieved using a Maclaurin series expansion in p, the radial coordinate with numerical

results using both methods of solution calculated.
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1 Introduction
The complex form of Green’s theorem is:

CJ.D f(z, E)dz = 21’_” :]: dxdy
pll o

where [ (Z,E) 18 a complex valued function that

depends on z and its conjugate z,withz =x+ 1y.
The region R is bounded by the curve C where first
order derivatives of are assumed continuous.

Introducing a simple pole in R at z, and imposing

that 7'(z, E) , has unit residue, then by construction:

J(z2)=w(z,2)g(z,2))

where g has unit residuc at z =z, and W(Z,E) 18
analytic in R. By enclosing the singularity in a
circle Z centre z, and with the usual connecting

contour, then for this punctured region as shown in
figure 1,

ggg(z, z,)w(z, E)dz = qgg(z, z, )w(z, E)dz
- 4) g(z,z,)w(z, E)dz

- Cﬁg(z, Z, w(z, E)dz —27miw, asz—0
[

so that
2miv, = @g(z, Zyw(z, 2)dz — 21’Hg(z, Z,) % dxdy
c R oz

(1)
If the pole lies on the curve C then it can be shown
using the Plemelj formulae, or by indenting the
contour, that

. SN ow
v, = C;Sg(z, 2)W(z, 2)dz 2szjg(z, 2) - ddy

Using this equation one would be able to solve a
variety of potential rewritten as Fredholm integral
equations of the first and second kind.

2 The three dimensional counterpart
Here the four dimensional quaternion operator of
Hamilton will be used to derive the three
dimensional counterpart of equation (1). The
quaternion variable:

(L7 1= %y, 2) = (@ ix jy. k2)

where 1 =§x+}y+/’€z, the separators i, j, k
satisfy the following multiplication table

* i ] k
i -1 k -
] -k -1 1

k J -1 -1

Where the * denotes multiplication, the separators

AA A

must not be confused with the unit vectors 1,7,k .

Writing the quaternion v as [V,v] where V is a

scalar and v is the vector v = ;V1 + ;fvz + ;’:1123 , then
it follows that
vw= [V, v][W, w]

=[VW-v. w, Vw+Wy+v A w]
where the . and A are the usual scalar and cross
product of vectors. Thus for the vector operator V',
it follows that
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[10. 917 viav =[ 0,511V, vds

1€

JIEVR IV 4V Avidv=[[=ny, Vit na vids
R )

2)

Equation (2) is remarkable in the sense that this
simple looking expression contains Gauss’
divergence theorem and Stoke’s theorem of vector

calculus, where 7 1is the unit outward normal to the

surface S, enclosing the region R and dv and ds are
the wusual volume and surface differentials
respectively. Equation (2) forms the basis of the
three dimensional counterpart of equation (1). The
functions involved will be dependent on two

position vectors P and (), with W chosen to

represent the reciprocal of the distance from P to
0, so that

W=r"
and VW =—rr”,

so that YiW = Y;W = (), where differentiation is
carried out with respect to the coordinates of
P with ) fixed denoted by the subscript p. When

differentiating with respect to the coordinates of O

a suffix Q will be used. Now it can be shown that:

[0, VIO, W w] = [0, V][, 0][0, w]
_[7,01[0, V][0, w]
HO, V][, 0][0, w]
integrating this last identity over a region R,

bounded externally by a closed swrface S and
internally by a small sphere s, of radius 7, and

centre () then

[ 10,1110, Wwds_jWO 110, V1[0, w]dv

S48

- [10.9, 107, 01[0, wldv
3)

Applying the operator [0,V ]| to both sides of
equation (3) gives the left hand side as
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j [0,V 1[0, #][, 0][0, w]ds

S+sq

= j [0, V117, 0][0, 2][0, w]ds

Sy

=— [ (0.9 1[0, 21[0. w]ds

S+

B -[[0’ rr 1[0, ][0, wlds —

[10.2r3110, ][0, w]ds

5

= [[0, 77100, 7][0, w]ds +[0, 47w,

as 7, >0

similarly for the right hand side of equation (3) i.c.,
[10.V, 10, 0110, V1[0, wdv

I

— [V, 010, 0][0, wldv

= [0,V 710, V1[0, wldv— [[VL ¥, 0][0, w]dv

R

= [[0,r7"1[0, V][0, w]dv

R
hence by equating both sides the following is valid
[0, 47w, ]+ j [0, 777110, ][0, wlds

(4)
= {10,777 1[0, V1[0, w]dv

the vector part of equation (4) is the three
dimensional counterpart of (1).

3 Application to magnetostatic field

problem

Equation (4) will now be applied to calculate the
filed components associated with an axisymmetric
conductor of rectangular cross section situated
equidistant from two semi-infinite regions of iron
of finite permeability are computed. The
magnetostatic  field associated with iron-free
axisymmetric systems has been considered by
Boom and Livingstone [1], Garrett [2] and many
others. Caldwell |3], Caldwell and Zisserman [4]
and [5] have carnied out work which takes account
of the effects of the presence of iron on such
systems. The main advantages of introducing iron
are:

i. Higher fields are provided for the same current,
producing substantial power savings over
conventional conductors.
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i. The field uwniformity is improved even for
superconducting solenoids by placing the iron in a
suitable position. The geometry considered is
shown in figure 2, a toroidal conductor V° of
rectangular cross section having inner radius A,
outer radius B and length 1.-2g, is located
equidistant between two semi-infinite regions of
iron of finite permeability a distance L. apart, the
axis of the torus being perpendicular to the iron
boundaries. The region V between the conductor
and the iron is assumed insulating. Cylindrical
polar coordinates (o, ¢,z) are used where pand z are
normalized in terms of L.

Prior to Caldwell [3] the presence of iron in
axisymmetric systems had been largely ignored see
Loney [6] and Garrett [2] et al.

Using cylindrical coordinates (p,¢,z), for the
conductor of figure 2 in the presence of iron of
finite permeability, the vector part of equation (4)
18:

47B,(P)= j{—/\(n AB)- B)[}ds
v
+I{E3/\(YAB)— (Y'J—P;) r}dv
U7l 7]
&)
the governing equations are those of Maxwell thus:
VAR Oinl
~h2E —Cey in 1!

where e, is a unit vector in the direction of
increasing ¢ and C is a constant with

VB=0inVand V’
with boundary conditions
nnB=0on z=0,1

B,(p,z)>0as p—>w
B (p.z2)y=>M as p—>w,(MeR)

The position vector of a point r in cylindrical
coordinates is:
r=(z—-z%-xsindj+(p—xcos Hk
and

3 2 2 2 372
Ed :((z—z') +x"+p —prcos&l)

considering the volume integral over V' in
equation (5) and calculating the triple cross product
gives

raVAB=

/uoj((x—pcos :9)§+ (z—z"sin :9}'+ (z—z")Ycos :9];)

and hence the volume integral becomes
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x(x— pcos Rydxdz'd G ;
((z—zW +x* + p* —2xpoos B

wif [
wif [

x(z — z"ysin Gdxdz'd 9 A_

3f2

(z=zW +x* + p* —2xpcos P

_ EA x(z —z"ycos Sdxdz' d 9
IUOJJ‘ II (z=zW +x + p —2xp00s3)

e

the } component vanishes due to the integrand
being an odd function, so that

j{|/\(v/\3)}dv_

2 x(x— pcos B)dxdz'd&‘
luoj j j (z=zV +x" + p’
,UojLajbj (z=zW +x* + p* —2xpcos P
(6)

Expanding these integrals in a Maclaurin series in
p it can be shown (see Pavlika [8]) that the 1 and
components of expression (6) are given by

3/2

—2xpcosP)

x(z —z"cos Sdxdz' d9 i

3/2

Zy
2 2
12 (x”+2w7)

xw(wl + x2 )1/’2

i +0(p”)
#ol p (x" + 6x*w? + 4w")
3/2

2x(w? + x*)

2' aw(w” + x7)

LA
and
Pl jm (x> +w )”2 2% w o
—log| U2, 2 243/2
2 (w* +x*) xw(w +x7) ,
+0(p")

where w=z-z". Now to consider the surface integral
S where

S = { L ( 'B)r}ds
sUrf 0 P
j{%/\(m@—@"f)z}ds+

3 U7 7|

nb
j{ (n 3)z}dSESI+SZ+SS.
P B
Where the discs s; (1i=1,2,3) are shown in figure 3.
On the dises s; and s,, nAB=0, so that the

integral S, becomes

S = j{/\(n/\B)( B) } I(nB) rds,

P 7P -

with z=0 on s;. Using the expression for with

outward drawn normal to s, equal to —i, then
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J~z J-Z:'r z'?+xsin:9}' (p—xoos:?)]}
@+ X + g —2xpcs B

similarly S, (with z=1) becomes
— timl [P ZﬁB {1— 2" +xsin ¥ —{ p—xcos Ik G
. P—W{L jo Z{((1—2')2+ch+,{)2—2.790005:993’2

in the integrals S; and S, the ] component vanishes.
Similarly on s; considering S; such that

S3=S[{_| (Izl) }

and using the vector identity:

ANBACY=(AC)B-(4.B)C
= ramAB)Y-nBy=(#Bm—(rnB—(nB)y
(7

with outward drawn normal to s; radial, so that

n=sin 19}' + cos 9k , equation (7) gives

B.(—(p—xcos $cos $+ xsin® 3) )
—B,cos$(z—z") 1

+
B sin%(z—z" N
+B,sin $((p — xcos $)+ xsin Fcos F) /
+
B cos Hz—z" ~
k
+B,(cos §(p—xcos F)+ xsin® &)
so that
s =l

Bl(—(p—xcx:s@ms%xsin: 9 &gk' }

(NP s Fz—z"

{[B sinXz—z" j pd:?ck' A}
+lim
+B sinH{ p— x 008 H) + xsin Foos F)
Bomwd(z-2z") (pd&ldz')"
+1im . k
. +B’(oos 19(pf:«:oosL§l)+xsin2 8] R

therefore
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4nB,(P)=
(x2 oty |7
i jm

P (xt +oxtw? + dwh)
=N 372

20 aw(w +x7)
Pa |z

+

Jpmgn| [ LR e TR 5 “
2 8 (' +xY e ol x|

fim rb J- z'§+xsinl9;f (p—xoos:g)l:f ,
| @2+ 0 —2xpoos

o[-zt xsin—(p—xoos Sk ,
g{ﬁ; BZ{((lz')hx2 + 7 —2xpeos & }d‘%}

[ B(Hp—xos Hos S+ xsin 9 ASE ™
+imq| . i
= (\Boasfz—z" 3
/B sinHz -z odsk'\ ~
+lim§| (— J
= \+B snd(p-ros 9 +xsindas ) \ R’
B cosXz—z" odget |\~
+him ( )k
- +B)(oos 19(pfxoos&9+xsinz :9) R’
+0(p) (8)

In this last equation the point P 1s allowed to

occupy the boundary points ¢ giving rise to a

diagonally dominant system of algebraic equations
for the unknown field values 5 and B on the iron

boundaries. Once these have determined, to
calculate the ficld components off the iron
boundaries at (p,z) the coordinates are input into

expression (8) used as a formula. The respective
field components B (p,z) and B, (p,z) can then

be determined near the axis.

4 Solution to the vector potential
using a Maclaurin series in p

Using the integral representation of the vector
potential this gives

A(r) = ILD av', hence for finite p,
Jr=r']
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xoos e

A=t S ([T

where g = # -1 . known as the image factor. By
A+l

expanding 4,(p,z)in a Maclaurin series in p it
follows that

02 fFA402)
A¢(p,2)—x4¢(0,z)+paq¢ap +g /j; ¥ +QP)
letti _ 7 cos
ctting [ IO R d,

where
1/2

R={(z-z'-n) +x*+ p* —2xpcos 9}
= A(p =L 5 K og, (o0 +2 Y L

+0() (9
Similarly, it can be shown (see for example Pavlika
[7]) that:

p . i -~ 3 —&+H-Z
Bp(p,z):‘%]T 3 K [[wlog, (x+08")—xor ]!

=b M=sti—z
=00

+ O(F) (10)

where a=w +x* and w=z—z'-#, and
B(p)=" 3 K llwlog e+ @ )L L2 +0W)

(11)
Results for A(pz), B(az) and B(pz) using

expressions (9), (10) and (11) with a=0.9, b=1.1,

€ = 0.05 and gy = 100 were found to be in good
agreement with the solution using the quaternion
method of solution as shown in tables 1, 2, 3 and 4.

5 Conclusions

The two methods of solution were found to be in
good agreement. The summations were performed
from -200 to 200 with a change only in the fourth
decimal place occurring when the number of terms
in the summation was doubled. The effect of the
permeability of the iron is shown in figures 4, 5, 6
and 7.
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7 Tables

Table 1. Values of B, (©,z) using the Maclaurin
Series Expansion.

p |z | p=10° n=10* | u=10 | p=1
0.1]0.1]55843 |0.0127|0.0718 | 0.2815
0.2]0.1]1.131-2 |0.0272]|0.1472 | 0.5776

0.3]0.1] 2.350E-2 | 0.0451 | 0.2297 | 0.9026

0.410.1]3.826-2 | 0.0680 | 0.3226 | 1.2710

0.5]0.1]5896-2 |0.0976 | 0.4297 | 1.6972

0.1]02]8727-3 | 0.0141 | 0.0607 | 0.2316

0.1]03]8493-3 | 0.0122 | 0.0443 | 0.1647

0.1]104]5.153-3 | 0.0070 | 0.0234 | 0.0855

01[05]0 0 0 0

Table 2. Values of B;(¢,z) using the Maclaurin
Series Expansion.

p |z p,:103 j.JFlO2 n=1

0101179169 | 17.6163 | 69821

0.1]101]17.0149|17.6150 | 7.0022

0.2]0.1]179090 | 17.6111 | 7.0627

03]0.1]17.8990 | 17.6046 | 7.1634

0.4]10.1]17.8851 | 17.5964 | 7.3045

0.5]0.1]17.8672| 17.5838 | 7.4860

0.102]179731|17.6545 | 7.5232

0.1103]179722 | 17.6770 | 7.9258

0.1]04] 179860 | 17.6995 | 8.1802

0.1]0.5]17.9866| 177014 | 8.2672
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Table 3. Values of B, (p.z) using the

quaternion method of solution.

P

Z

n=10"

u=10°

p=10

0.1

0.1

5.831E-3

0.0162

0.1041

0.0361

0.2

0.1

1.314E-2

0.0342

0.2119

0.0775

0.3

0.1

2.343E-2

0.0555

0.3673

0.1425

0.4

0.1

3.818E-2

0.0819

0.4520

0.1598

0.5

0.1

5.886E-2

0.1150

0.5913

2.0971

0.1

0.2

8.425E-3

0.0165

0.0851

0.2936

0.1

0.3

8.082E-3

0.0135

0.0606

0.2071

0.1

0.4

4.897E-3

0.0070

0.0315

0.0106

0.1

0.5

0

0

0

0

Table 4. Values of B.(zz) using the quaternion
method of solution

P

Z

n=10"

u=10°

p=1

0

0.1

17.9167

17.6165

6.9822

0.1

0.1

17.0147

17.6154

7.0032

0.2

0.1

17.9092

17.6121

7.0637

0.3

0.1

17.8991

17.6048

7.1644

0.4

0.1

17.8853

17.5967

7.3055

0.5

0.1

17.8675

17.5838

7.487

0.1

0.2

17.9732

17.6549

7.5242

0.1

0.3

17.9723

17.6780

7.9268

0.1

0.4

17.9861

17.6998

8.1812

0.1

0.5

17.9867

17.7018

8.2682
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9 Figures
Figure 1.The region R bounded by the curve C showing the singularity z; inside R

Figure 2. A toroidal conductor V’ of rectangular cross section located midway between two semi
infinite regions of iron of finite permeability. The region V is assumed to be insulating.
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A




Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007

Figure 3. The volume of interest over which the integrations are performed.
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/
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Figure 4. The variation of B.(o,z) with g and z for two semi-infinite regions of iron of unit
permeability. M o=0.3, 20=0.2, ¢ p=0.1
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Figure 5. The variation of B.(p,z) with o and z for two semi-infinite regions of iron of infinite
permeability. M o=0.1, 20=0.2, ¢ p=0.3

Bz (r,z)
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17.98

T
17.9 -

17.94 1

Figure 6. The variation of B,(o,z) with g and z for two semi-infinite regions of iron of unit
permeability. M o=0.1, 2¢0=0.2, ¢ p=0.3

Br(r,z)

Figure 7. The variation of B, (pz) with pand z for two semi-infinite regions of iron of infinite
permeability. Bo=0.1, Hpo=0.2, 8 p=0.3
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