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Abstract: A numerical method of the correlation sensitivity analysis for nonlinear random vibration system is 
presented in this paper. Based on the first passage failure model, the probability finite element method is 
employed to determine the statistical characteristic of failure modes and the correlation between them. The 
sensitivity of correlation between failure modes with respect to random parameters is discussed in time domain. 
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1   Introduction 

Uncertainties in material properties and structural 
geometry are due to measurement inaccuracies or 
structure complexities. Structures with random 
parameters are complicated to analyze, since the 
response is statistically correlated to these random 
parameters. During the last two decades, there has 
been considerable development in the analysis for 
random vibration systems, by using of probability 
finite element method (PFEM), neural network 
method and the maximum entropy theory [1-3]. The 
safety of engineering structures is one of the major 
objectives for designer. Reliability analysis can help 
designer to establish acceptable tolerances on 
structures and determine the fluctuations of the 
system parameters for safe operations. Reasonably 
consideration of correaltion between different failure 
modes is very important. It is maybe lose of 
practical meaning if you could not handle them 
corretly[4]. Since different components have 
common source of excitations and the systems are 
characterized by one set of parameters, the responses 
must be mutually dependent[5-7]. From the theory of 
PFEM, the statistical properties of responses depend 
on random parameters. So, by using of dynamic 
sensitivity analysis method, the sensitivity of 
correlation between failure modes with respect to 
random parameters can be gotten. The result will be 
full of greatly significances for simplifying of 
correlated failure modes, the system reliability 
analysis with correlated failure modes and 
reliability-based optimum design. In this paper, on 
the basement of first passage failure model, PFEM is 
employed to determine the statistical characteristic of 
any failure mode and the correlation coefficient 
between them. The sensitivity of correlation between 

failure modes with respect to random parameters is 
discussed later. 
 
 
2  The statistical characters of failure 
modes 

The first passage problem for nonlinear vibration 
systems is defined as 
( ) XAXΑg −=,                              (1) 

where X=[X1, X2,…, Xn]T is the response vector of 
the system, which can include any response of 
system, such as displacement, velocity or 
acceleration etc; and A=[A1, A2,…, An]T is the 
threshold vector of X. g(A,X) represents the safe state 
and failure state and can be defined as 
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When g(A,X)=0 is the limit-state equation, 
representing limit-state surface or failure surface. 
According to different failure situation, Eq.(2) can be 
expressed as the following equations 

( ) iiiii XAXAg −=,                        (3) 
where gi(Ai,Xi) is ith state function. In fact, the 
response vector of X and the threshold vector A can 
be considered to be mutually independent. By using 
of PFEM[1,3,8], the mean vector and standard 
variance vector of system responses and failure 
modes can be written as 
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( )[ ] 222 ,Var XAg σσXAgσ +==                  (7) 

where r is the random parameter matrix (rij)s×t , which 
can include all of the systems probabilistic random 
variables. In most cases, the element of matrix r are 
considered to be as mutually independent. cs(r) is 
the column of r. [•][2]=[•]⊗[•], ⊗represents Kronecker 
product, which is defined as (A)p×q ⊗ (B)s×t= [aijB] ps×qt. 

The combination vector of thresholds and 
responses is defined as Y=[A1, A2,…, An, X1, X2,…, 
Xn]T. Then the covariance vector and correlation 
coefficient vector of failure modes can be written as 
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From Eq.(8) and Eq.(9), we can determine the 
covariance and correlation coefficient of any failure 
mode.  
 
 
3   The correlation sensitivity analysis 
of failure modes 

Sensitivity analysis plays an important role in 
structural optimization, since most of optimization 
methods require the derivatives with respect to the 
design variables. The system reliability analysis with 
correlated failure modes is much more complicated 
than that of with independent failure modes. So far, 
the system reliability analysis with correlated failure 
modes has not been solved completely. On the other 
hand, the system responses are mutually dependent. 
For our knowledge, the failure mode is correlated, 
and in some cases, is strongly correlated.  

From the Eq.(8) and Eq.(9), the covariance and 
correlation coefficient between failure modes gp and 
gq can be written as 
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The sensitivity of ρ(gp,gq) with respect to arbitrary 
element r0 of random matrix r can be derived as  

( ) ( )

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∂∂
+

∂∂
−

∂∂
=

∂

∂

2
0

2
0

0

0

,Cov

,Cov,

qg

q

pg

p

qp

rr
gg

rgg
r

gg

gg
qp

gg

qpqp

σ

σ

σ

σ

σσ
ρ

 (14) 

where 
( ) ( ) kl

n

i

n

j

s

k

t

l

qp rDCBA
r

gg
Var

,Cov 2

1

2

1 1 1
1111

0
∑∑∑∑
= = = =

+++=
∂

∂ ( )  

(15) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂∂

∂
+

∂
∂

∂

∂
=

kl

j

kl

i

j

qj

ji

pi

i

p

r
y

r
y

y
g

r
y

yy
g

r
y

y

g
A

0

2

0
2

2

1  (16) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂

∂
+

∂
∂

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

kl

j

kl

ij

j

qi

ji

q

i

p

r
y

r
y

r
y

y

g
r
y

yy
g

y
g

B
0

2

2

0

2

1  (17) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

kl

j

kl

i

j

q

i

p

r
y

rr
y

y
g

y
g

C
0

2

1              (18) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

0

2

1 rr
y

r
y

y
g

y
g

D
kl

j

kl

i

j

q

i

p              (19) 

( kl

n

i

n

j

s

k

t

l

g
rDCBA

r
p Var

2

1

2

1 1 1
2222

0
∑∑∑∑
= = = =

+++=
∂

∂σ
) ( )   (20) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂∂

∂
+

∂
∂

∂

∂
=

kl

j

kl

i

j

pj

ji

pi

i

p

r
y

r
y

y
g

r
y

yy
g

r
y

y

g
A

0

2

0
2

2

2  (21) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂

∂
+

∂
∂

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

kl

j

kl

ij

j

pi

ji

p

i

p

r
y

r
y

r
y

y
g

r
y

yy
g

y
g

B
0

2

2

0

2

2  (22) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

kl

j

kl

i

j

p

i

p

r
y

rr
y

y
g

y
g

C
0

2

2              (23) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

0

2

2 rr
y

r
y

y
g

y
g

D
kl

j

kl

i

j

p

i

p             (24) 

( ) kl

n

i

n

j

s

k

t

l

g
rDCBA

r
q Var

2

1

2

1 1 1
3333

0
∑∑∑∑
= = = =

+++=
∂

∂σ
( )   (25) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂∂

∂
+

∂
∂

∂

∂
=

kl

j

kl

i

j

qj

ji

qi

i

q

r
y

r
y

y
g

r
y

yy
g

r
y

y

g
A

0

2

0
2

2

3  (26) 

 

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007     252



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂

∂

∂
+

∂
∂

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

kl

j

kl

ij

j

qi

ji

q

i

q

r
y

r
y

r
y

y

g
r
y

yy
g

y
g

B
0

2

2

0

2

3  (27) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

kl

j

kl

i

j

q

i

q

r
y

rr
y

y
g

y
g

C
0

2

3              (28) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
=

0

2

3 rr
y

r
y

y
g

y
g

D
kl

j

kl

i

j

q

i

q             (29) 

From Eq.(14)~Eq.(29), we can determine the 
sensitivity of ρ(gp,gq) with respect to arbitrary 
element r0 of random matrix r. 
 
 
4   Numerical example 

A two story frame with material nonlinearities is 
shown in Fig.1. The deterministic masses m1 and m2 
are 3.7kg and 1.5kg, 
respectively. The random 
spring stuffiness k1 and k2 
are normally distributed 
with the coefficient of 
variation equal to 0.01. 
The mean values of 
spring stuffiness are both 
of 45×10 N/cm. The 
system failure model is 
considered to be the first passage model, i.e. the 
failure of the first floor occurred when its 
displacement is beyond the limits of threshold A

6

th1; 
and so does the second floor failure. The random 
threshold Ath1 and Ath2 also are normally distributed 
with the coefficient of variation equal to 0.01. The 
mean value of Ath1 and Ath2 are 1.2cm and 2.1cm, 
respectively. 

The nonlinear differential equation is represented 
as 
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with initial conditions ( ) 00 =x , . ( ) 00 =x
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The integration of Eq. (30) has been carried out 
using a forth Runge-Kutta routine. From Eq.(7)~ 
Eq.(9), the standard variance of g1 and g2, the 
covariance and correlation coefficient of g1 and g2 
can be obtained. In order to verify the effectiveness 
of the method proposed in this paper, the results are 
compared with Monte Carlo simulations and are 
shown in Fig.2~Fig.5.  

 

 
Fig.2 The standard variance of failure mode g1 

 

 

Fig.1 System model 

Fig.3 The standard variance of failure mode g2 
 

 
Fig.4 The covariance of failure mode g1 and g2 

 
From Fig.2~Fig. 5, it can be seen that the failure 

modes g1 and g2 are correlated; the independent of 
them is only true at some discrete point during the 
period; and in most of cases, the strength of 
correlation is strong ( ( )tgg 21

ρ ≥0.66). Therefore, the 

correlated failure is the main cause of system failure. 
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Fig.5 The correlation coefficient of failure mode g1 and g2 

From Eq.(14)~Eq.(29), the sensitivity of ρ(g1,g2) 
with respect to the random parameters k1 and k2 are 
obtained and shown in Fig.6 ~ Fig.7.  

 

 
Fig.6 The sensitivity of ρ(g1,g2) with respect to k1 

 

 
Fig.7 The sensitivity of ρ(g1,g2) with respect to k2 

 
Form Fig.6 and Fig.7, it can be obtained that the 

sensitivity curves of ρ(g1,g2) with respect to spring 
stiffness k1 and k2 have nearly the same tendency and 
increase remarkablely with the time. However, 
because of some inherent feathers of systme model, 
such as out exciting force, the senstivity of ρ(g1,g2) 

with respect to k2 is almost two times bigger than 
that of k1.  
 
 
4   Conclusions 

A numerical method of the correlation sensitivity 
analysis for nonlinear random vibration system is 
presented in this paper. Based on the first passage 
failure model, the probability finite element method 
is employed to determine the statistical characteristic 
of failure modes and correlation coefficient between 
them. In most of cases, the system failure modes are 
strongly correlated, and the correlated failure is the 
main cause of system failure. The sensitivity of 
correlation between failure modes with respect to 
random parameters is discussed. 
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