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Abstract: - A discrete nonlinear torsional vibration model of a compound planetary set comprises d number of 

decks is proposed in this study. The model includes all possible power flow configurations, any number of 

planets in any spacing arrangement and any planet mesh phasing configurations. It also includes time variation 

of gear mesh stiffnesses as well as clearance (backlash) non-linearities.  The nonlinear model equations of 

motion were obtained by assembling equations of motions of single separate decks according to central 

elements connections. Equations of motions were solved using HBM in conjunction with inverse Fourier 

Transform.  Dynamic gear mesh forces for first, second and fourth gear ratios were obtained. 
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1. Introduction 
 

Planetary gear sets are widely used in many 

machine applications.  Planetary gear sets have 

several advantages over counter-shaft gear systems, 

including their higher transmitted power density, 

compactness, ability to achieve multiple speed ratios 

through different power flow arrangements, and 

lower gear noise.   In addition, axi-symmetric 

orientation of the planet gears in the gear set creates 

negligible radial bearings forces. 

Planetary gear train dynamics has been a topic of 

interest to powertrain researchers for two main 

reasons.  First, the forces generated at the meshes of 

the planetary gear set under high-speed dynamic 

conditions are typically larger than the quasi-static 

forces transmitted by the same meshes, influencing 

the fatigue lives of the gears and planet bearings.  

Secondly, these dynamic mesh forces are 

transmitted through to the surrounding structures 

causing structure-borne noise.  Therefore, a dynamic 

model of a planetary gear pair should aid a designer 

in quantifying the impact of dynamics on gear set 

durability and noise, and also help finding ways of 

reducing the dynamic response amplitudes. 

The great majority of the planetary gear dynamic 

models developed to date for single-stage sets were 

linear with time-invariant mesh stiffness, so that 

modal analysis techniques were employed.  Models by 

Antony [1] predicted the free and forced vibrations.  

Kahraman [2] employed a purely torsional model for all 

possible power flow configuration of simple, double-

planet and complex-compound planetary gear sets such 

as long-planet systems. Toda and Botman[3] examined 

the planet mesh phasing influence using two-

dimensional time-variant models.  They showed that 

planet mesh forces can be reduced or even neutralized 

by planet mesh phasing. A later model by Kahraman [4] 

expanded these formulations to a three-dimensional one 

with the axial and rotational motions of the gears 

included so that dynamic response of planetary gear sets 

using helical gears can be predicted. 

The experimental and theoretical studies on single and 

multiple mesh spur gear dynamics [5-7] clearly indicate 

that spur gears should be modeled as nonlinear systems 

having periodically varying parameters. 

There are a very few published nonlinear time-varying 

planetary gear set dynamic models.  One such model by 

Kahraman [5] used a two-dimensional formulation with 

both mesh stiffness fluctuations and gear backlash 

included.   Tao and Hai Yan [8] investigated the 

frequency response of nonlinear planetary set with 

multiple clearances by only focusing on a single power 

flow configuration in which the ring gear was held 

stationary.  Another recent study by Alshyyab and 

Kahraman[9] developed a torsional single stage 
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nonlinear model, equations of motion were solved 

semi-analytically using a multi-term harmonic 

balance and a numerical integration method.  

To the best knowledge of the authors, multi-deck 

dynamics is not explored yet. The aims of this study 

are proposing a purely nonlinear torsional model for 

a compound or what so called multi-deck gear sets.  

A multi-term harmonic balance solution will be 

used to find steady-state dynamic mesh forces for all 

power flow configuration. 

 

 

2. Dynamic Model 
A schematic or what so called stick diagram of a 

generic compound planetary set shown in Fig. 1a is 

composed of a number of single-planet-single-stage-

decks, and clutches (not shown) or permanent 

connections, either constraining central members 

(sun, ring or carrier) to act as reaction members, 

rigidly connecting central members or leaving them 

to rotate freely. Connections, rather than meshes, 

between members belong to the same deck are not 

allowed. Connections of central members are chosen 

here arbitrary to keep generality of the model. 

Splitting model of Fig.1a into its single deck 

components as shown in Fig 1b enables writing the 

equations of motion of the model utilizing recent 

torsional nonlinear single stage planetary model 

proposed by alshyyab and kahraman[9]. Any single 

deck (the nth  

 

 
 

one) comprises a constraint stiffnesses 
( )n
itk ( , ,i s r c= ), number ( )n

pn of planet gears ( )npi  

( ( )1,2, , n
pi n= … ),and three central members, sun ( ( )ns ), 

ring ( ( )nr ) and carrier ( ( )nc ). The use of the 

superscript (n) or ( ,n) hereafter is to indicate 

quantity or parameter pertains to deck-n. Planet 

gears are held by a rigid carrier through rigid planet 

bearings and are free to rotate with respect to their 

carrier. Central elements’ support bearings are rigid as 

well. 

The nth deck dynamic model is shown in Fig. 2. It 

employs a number of simplifying assumptions.  (i) Each 

gear body is assumed to be rigid and the flexibilities of 

the gear teeth at each gear mesh interface are modeled 

by a spring having periodically time-varying stiffness 

acting along the gear line of action.  The mesh stiffness 

is subject to a clearance element representing gear 

backlash.  (ii) Each gear and the planet carrier were 

assumed to move only in the torsional ( )nθ  direction 

only.  (iii) Viscous gear mesh damping elements are 

introduced to represent energy dissipation of the system.  

(iv) Gears and carriers were assumed to be free of any 

eccentricities or run-out and roundness errors.  The 

central members ( )ns   , ( )nr  and ( )nc  are constrained by 

torsional linear springs of stiffness magnitudes ( )n
stk , 

( )n
rtk  and ( )n

ctk , respectively. The magnitudes of these 

stiffness constraints can be chosen accordingly to 

simulate certain power flow arrangements.  Each gear 

body i ( ( ) ( ) ( ) ( ) ( ), , , 1 , ,n n n n n
pi s r c p pn= � ) is modeled as a 

rigid disk of polar mass moment of inertia ( )n
iI , radius 

( )n
ir  and torsional displacement ( )n

iθ .  Here ( )n
iθ  is the 

vibrational component of the displacement defined from 

the nominal rotation of the gear.   Planets are located at 

radius ( )n
cr  at arbitrary spacing angles )n

i
(Φ  defined 

positive in counter-clockwise direction.  External 

torques ( )n
iT  ( ( ) ( ) ( ), ,n n ni s r c= ) are applied to the central 

members to represent input or output torque values. 

The mesh of gear j ( ( )ns or ( )nr ) with a planet ( )npi is 

represented by a periodically time-varying stiffness 

element ( )
( )

n
jpik t  subjected to a piecewise linear backlash 

function ( )n
jpig  that includes a clearance (backlash) of 

amplitude ( )
2

n
jpib .  Accordingly, the dynamic model of 

each single deck with ( )n
pn planets includes 

( )2 n
pn clearances.  A periodic displacement function of 

( )
( )

n
jpie t is applied along the line of action to account for 

intentional gear tooth profile modifications, surface 

wear, and tooth manufacturing errors.  Loses of gear 

contacts are represented by constant viscous damper 

( )ns  

( )nc  

( )n
rT  ( )n

rtk  

( )n
ctk  

( )n
stk  

( )n
cT  

( )n
sT  

( )nr  

Fig. 1 Stick diagram, a) Multi deck compound 

planetary gear set. b) the nth deck external applied 

torques and torsional constraints  
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coefficient ( )n
jpic . Here, it is assumed that all planets 

( )npi  and their respective meshes with gear j ( ( )ns or 

( )nr )  

 

 are identical so that ( )
( )

n
jpik t , ( )

( )
n
jpie t , ( )n

jpib , ( )n
jpig  and 

( )n
jpic  are the same for each ( )njpi  mesh, except the 

phase angles of ( )
( )

n
jpik t  and ( )

( )
n
jpie t which differ due 

to planet phasing conditions. 

 

 

3. Equations of Motions 
Equations of motion for the compound planetary set 

of Fig. 1a can be written by utilizing a recent work 

of Alshyyab and Kahraman [9] for single-planet-

single-stage planetary set 

Non-dimensional equations of motion for a ( ( )3 n
pn+ ) 

dof nonlinear torsional single deck model shown in 

Fig 2 are, ( ( )[1,2,.., ]n
pi n∈ , [ , ]j s r∈ ) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) 2 ( ) 2

( ) ( ) 2 ( ) 2 ( )

[ ] ( ) ( ) [ ] ( ) ( ) 0

n n nn n n n n
c sc sc rc rccpi spi rpi

n n n nn n
sc rcspi spi rpi rpi

t t p t p t

t g t t g t

θ θ ζ ω ζ ω

ω κ ω κ

+ + −

+ − =

�� �� � �

 (1)  

( ) ( ) ( ) ( ) ( ) ( )2

1

( ) ( ) ( ) ( )2

1

( ) 2 ( ) [ ] ( )

[ ] ( ) ( )

p

p

n

n n n n n n
j jj jj jpi j j

in

n n n n
jj jpi jpi j

i

t p t t

g t f t

θ ζ ω ω θ

ω κ

=

=

+ +

+ =

∑

∑

�� �

 (2) 

 

( )
( ) ( )( ) ( ) ( )

( )
1 1

( ) ( )( ) ( ) ( ) 2

1 1

( ) ( )( ) 2 ( ) ( ) 2 ( )

1

( ) ( ) 2 ( )

2 ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( ) ( )

p p

p p

p

n nn
p n nn n n

c sc sccpi spin
ce i in n

n nn n n
rc rc sc spirpi spi

i in

n nn n n n
c c rc crpi rpi

i

I
t t p t

I

p t t g t

t t g t f t

θ θ ζ ω

ζ ω ω κ

ω θ ω κ

= =

= =

=

+ −

− −

+ − =

∑ ∑

∑ ∑

∑

�� �� �

�  (3)  

Here, the dot sign means derivative with respect to time.  

In these equations ( ) ( )n n
ce cI I=  ( ) ( ) 2 ( )( ),n n n

p p c pn I r m+ + ( )n
pm  is 

the equivalent mass moment of inertia of deck-n carrier 

assembly, ( )n
pim  and ( )n

pm are the mass of planet ( )n
ip  and 

the summation of masses of ( )n
ip   planets of deck-n.   

Absolute rotations ( )n
sθ , ( )n

rθ , ( )n
cθ , and the relative 

rotations of planets with respect to the carrier 
( ) ( ) ( )( ) ( ) ( )
n n n

ccpi pit t tθ θ θ= −  are used as the coordinates.  In 

these equations, ( )
( )

d
jpip t are the relative gear mesh 

displacements along the line of action which is defined 

as [9], 

 ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) [ ( ) ( )] ( )
n n n n nn n

j p cjpi cpi j j jpip t r t r t t e tδ θ θ θ= + − − ,(4) 

 { 1 ,

1 ,j
j s

j r
δ =

=
− =

 (5) 

the piecewise-linear displacement functions are defined 

as, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) , ( ) ,

[ ( )] 0, | ( ) | ,

( ) , ( ) ,

n n n n
jpi jp jpi jp

n n n n
jpi jpi jpi jp

n n n n
jpi jp jpi jp

p t b p t b

g p t p t b

p t b p t b

 − >



= <

 + < −


 (6) 

In Eq. 1, non-dimensional stiffness is given by 

 ( ) ( ) ( ) ( ) ( )ˆ( ) ( ) / 1 ( ) / ,
n n n n n
jpi jpi jp jp jpt k t k k t kκ = = +  (7) 

where ( )n
jpk  and ( )ˆ ( )

n
jpik t  are the mean and alternating 

components of ( )njpi mesh stiffness. The Other non-

dimensional parameters and quantities of equations (1-

6) were obtained by non-dimensionalizing using a 

characteristic length and frequency 0.01ab mm=  

and 1000a Hzω = , respectively, these dimensionless 

parameters are given by Alshyyab and Kahraman [9].  

Equations of motion for a compound planetary set 

Fig. 2 Dynamic model of a single-stage 

( )
( )

n
spie t

( )n
sT  

 

Planet 

( )n
rtk

 
( ) ( ) ( ), ,n n n
c c cT Iθ  

( )n
rpig  

( )n
rpic

( )n
stk

 

Sun 

 

Planet 

Carrier 

 

( )n
cr

r

 
 

( )
( )

n
spik t 

( )2 n
spb

 

( )n
spic

( ) ( ),n n
s sIθ

 

( )n
iΦ  

( )n
rpik  

( )n
ctk

( ) ( )
,

n n
pi piIθ

Ring 

( ) ( ) ( ), ,n n n
c c cT Iθ

( )n
pir

∼

∼

( )
( )

n
rpie t

( )n
rr
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composed of a number of single-planet decks can be 

obtained by assembling equations of motions of its 

split decks (Eq.1), with the fact that assembled 

equations for two connected members should be 

divided the same inertia term during the course of 

nondimensionalization. 

 

 

3.1 Steady-state Response Using the Multi-

term Harmonic Balance Method 

The parametric excitations ( )
( )

n
jpi tκ  ( , ,j s r=  1,2n = ) 

in Eq. 1 are periodically time-varying.  These 

excitations have a dimensional fundamental 

frequency ( )n
nmΛ = Λ =  ( ) ( ) /n n

cp p aZ ωΩ , where Λ is 

independent variable, ( )n
cpΩ  is the angular velocity of 

the planets with respect to their carrier, ( )n
pZ  is the 

number of planet teeth and nm  is an integer to 

accommodate commensurate frequencies of the first 

and the second deck meshes. Stiffnesses ( )
( )

n
jpi tκ  can 

be written in Fourier series form as,( [ , ]j s r∈ , 

[1,2]n∈ , [1,2, , ]pi n∈ � ) 

( ) ( , ) ( , )
2 2 1

( ) 1 [ cos( ) sin( )]

n

n

m H
n jpi n jpi n
jpi h h

h m

t h t h tκ κ κ +
=

= + Λ + Λ∑ . (8) 

Where, the increment of h in the last equation is nm .  

H is the number of harmonic terms sufficient to 

describe the periodic stiffness function. Amplitudes 

and phasing of the harmonic terms are given by 

Alshyyab and Kahraman [7]. 

The applied external torques where assumed 

constants.  Periodic solutions of equations (1) is 

assumed as, ( ,s   , , 1, 2, , ,pc r cp cp cpn… ) 

 ( , ) ( , ) ( , )( )
1 2 2 1

1

( ) [ cos( ) sin( )]

N
a n a n a nn

a n n

n

n n
t u u t u tθ

η η+
=

= + Λ + Λ∑  ,(9) 

Where again superscript n refers to deck-n, η is sub-

harmonic index, ( , )a n
ju   is the amplitude of the 

solution harmonic contents, and N is the number of 

harmonic terms considered in the assumed solution.  

The same way, the mesh displacement functions 
( )

( )
n
jpip t  are written as 

( ) ( , ) ( , ) ( , )
1 2 2 1

1

[ cos( ) sin( )]

N
n jpi n jpi n jpi n
jpi n n

n

n n
p P P t P t

η η+
=

= + Λ + Λ∑ ,(10) 

with  

 ( , ) ( , ) ( , ) ( , ) ( , )
1 1 1 1 1( )
jpi n cpi n j n c n jpi n

j p jP r u r u u Eδ= + − − ,(11) 

 ( , ) ( , ) ( , ) ( , ) ( , )
2 2 2 2 2( / )

( )
jpi n cpi n j n c n jpi n

j p jn n n n n
P r u r u u E ηδ= + − − ,(12) 

 ( , ) ( , ) ( , ) ( , ) ( , )
2 1 2 1 2 1 2 1 2( / ) 1

( )
jpi n cpi n j n c n jpi n

j p jn n n n n
P r u r u u E ηδ+ + + + += + − − .(13) 

where 1jδ =  for j s=  and 1jδ = −  for j r= .  Before 

enforcing a harmonic balance, the clearance functions 
( )

( )
n
jpig t  should be written in the same form as well, 

 ( ) ( , ) ( , ) ( , )
1 2 2 1

1

[ cos( ) sin( )]

N
n jpi n jpi n jpi n
jpi n n

n

n n
g v v t v t

η η+
=

= + Λ + Λ∑ .(14) 

By dividing the solution period T into Q subintervals 

( /T T Q∆ = ), and using Inverse Discrete Fourier 

Transforms, the amplitudes ( , )jpi n
k
v  can be obtained as 

[5], 

 
1

( , ) ( )
1

1

1

q

Q
jpi n n

jpi
q

v g
Q

−

=

= ∑ ,
1

( , ) ( )
2

1

2 2
cos( )

q

Q
jpi n n
n jpi

q

nq
v g

Q Q

π
−

=

= ∑ ,

 
1

( , ) ( )
2 1

1

2 2
sin( )

q

Q
jpi n n
n jpi

q

nq
v g

Q Q

π
−

+
=

= ∑ , (15) 

where ( ) ( )
( )

q

n n
jpijpi

g g q t= ∆ . 

Substituting equations (4-10) into equation (1), and 

applying a harmonic balance, a set of nonlinear 

algebraic equations is obtained in the form 
( , )

( , )
a n
iu Λ =S 0 , where the elements of vector S are given 

by alshyyab and Kahraman [9]. 

 

4. Two-deck Planetary Set 
As a case study, Two-deck planetary set shown in Fig.3 

will be considered. Parameters of this set are given in 

Table 1. The set is composed of clutches, rigid 

connections and two single-planet-single-stage decks. 

Connections (1) (2)c r  and (2) (1)c r  link rigidly carrier of 

first deck (1)c  with ring of the second deck (2)r  and ring 

of first deck (1)r  with carrier of second deck (2)c , 

respectively. All aforementioned connections are 

permanent. The output torque oT  is connected to the 

(2) (1)c r  permanently. Therefore, power flow 

configurations of first, second, third and fourth gear 

ratios can be obtained by changing central members 

assignments as input, reaction or free to rotate members 

via proper sequence of clutch release and activation.  

Input/output speed of ratio 2.82 suitable for first gear 

drive can be obtained by activation of clutches C13R 

and C12 which assign the sun of the first deck (1)s as an 
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input member and rigidly constraint the sun (2)s  of 

the second deck as a reaction member, respectively.  

The second gear drive of 1.55 input/output gear 

ratio is achieved by maintaining clutch C12 

activated, releasing of clutch C13R and activation of 

clutch  

 

  

C234 to transfer the input torque iT  

to (1) (2)c r connection. The reaction member is the 

difference between the second and fourth gear drive 

arrangements. Releasing clutch C12 and activation 

of clutch C4, sun of the first deck (1)s  would be  

 

 
reaction element and the input/output speed ratio 

would be reduced to 0.7, which is suitable for the 

fourth gear drive. For the third gear drive the 

input/output speed ratio is 1.0, it can be achieved by 

activation of clutches C234 and C13R while all 

other clutches are released, this configuration locks 

the assembly as one block with all its members have 

the same angular speed, hence, there is no 

parametric excitations. 

 

 

5.  Results and Discussion 
The parameters of the two deck study case of this 

work are given in Table 1.  Each deck is formed by 

four equally spaced planets ( ( ) 4n
pn = ). The gear 

parameters are such that the involute contact ratios 

of sun-planet and ring-planet meshes are1.55 ,1.81 , 

and  1.58 , 1.78  for first and second deck meshes, 

respectively. These contact ratios are estimated 

theoretically. The half backlash values for both 

meshes are chosen as 0.0jpb mm= , that is the linear case 

analysis is considered only. The characteristic length 

is 0.1ab mm= , and the characteristic frequency needed 

for nondimensionalization is chosen as 1000aω = Hz. 

Table 2, summarizes external applied torques and 

constraint stiffnesses for each member of first and 

second decks for the first, second and fourth gear drive 

ratio configuration, where reaction members are 

constraint by large torsional stiffnesses, and other free 

to rotate members are constraint with small stiffnesses.  

 

 
 

Mean listed applied torques were estimated statically for 

an input torque of 750 N.m. 

Values of 0.02 damping ratio is used to find the 

dimensionless characteristic damping given by alshyyab 

and kahraman [9]. As steady stated dynamic mesh 

forces are key parameters for design guide lines, 

dimensionl dynamic mesh forces along the lines of 

action are computed using formulas given by alshyyab 

and Kahraman[9].  In the any gear drive arrangement, 

rigid connections (1) (2)c r  and (2) (1)c r  imply that 
(1) (2)
c rθ θ=  and (1) (2)

r cθ θ= , respectively.  Hence, the 

algebraic equation for the first and second decks as 

given by Alshyyab and Kahraman [9] can be assembled 

accordingly to get a new set of nonlinear algebraic 

equation  

 S=0. (16) 

The last equation is solved iteratively for first, second 

and fourth gear ratios for equally spaced planets. Figure 

5 is period-1 root mean square forces (rms) for both 

 1st Gear Ratio 2ed Gear Ratio 4
th
 Gear Ratio 

n ( )ns  ( )nr  ( )nc  ( )ns  ( )nr  ( )nc  ( )ns  ( )nr  ( )nc  

External Torque, ( )
, .

n
iT N m  

1 750 1750 -2500 0 0 0 -225 -525 750 

2 1375 2500 -3875 412.5 750 -1162.5 0 0 0 

Torsional Constraint, ( )
, . / .

n
itk N m Rad  

1 110−

 
110−  

110−

 

110−

 

110−

 
110−  810+ 110−

110−

 

2 110−

 
110−  810+  

110−

 

110−

 
810+  110− 110−

110−

 

Mean sun/planet 

stiffness  

(1) 82.2(10)spik = , (2) 82.5(10)spik =  N/m 

Mean ring/planet 

stiffness 

(1) 82.8(10)rpik = , (2) 83.4(10)rpik =  N/m 

Table 2  Planetary set parameters. n is the deck 

number. 

n ( )n
sZ  ( )n

rZ  module Press. angle 

1 30 70 1.5 21.3�  

2 44 80 1.5 21.3�  

 
 Table 1  Parameters of first and second deck n=1, 2. 

oT  (1)s  
(2)s  

(1)r  
(1)c  

iT  

C234 
C13R 

C4 CR (1) (2)c r  

(2) (1)c r  
(2)r  
(2)c  

Fig. 3 Two deck planetary set.  
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deck meshes. The first and second columns of Fig. 5 

are the sun/planet and ring/planet period-1 ( 1η = ) 

mesh forces for first, second and fourth gear ratios, 

respectively. Harmonic and superharmonic 

resonances are shown in these figures. For all 

kinematics configurations of first, second and fourth 

gear ratios, when the mean transmitted load values 

though a mesh are nonzero valued, the 

corresponding dynamic forces are of considerable 

magnitudes or even they are many times larger than 

the mean transmitted load in the resonant regions.  If 

the mean transmitted load values are zero, the 

corresponding dynamic force response is almost 

zero, except regions of resonances. Values of mean 

mesh transmitted loads are given in table 2. 

 

 
6.  Conclusions  
In this work, a torsional nonlinear dynamic model  

 

 

 

 

 

for general compound planetary set was developed. 

Equations of motion for the special linear case of the 

model for two deck planetary set were solved for first, 

second and fourth gear ratios. The solutions were 

obtained using the harmonic balance method in 

conjugate of inverse Fourier Transform. 

The authors’ on going work is to find period-1 and the 

higher periodic solutions for the nonlinear case as well 

as demonstrate a detailed parametric study of the system 

parameters. 
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Fig. 5, rms mesh force response. (a), (c) and (d) for 

deck-1 meshes. (b), (d) and (f) for deck-2 meshes. 

(-) sun/planet meshes, (∼) ring/planet meshes. 
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