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Abstract: - In this paper a high-speed cryptographic co-processor, named HSSec, is presented. The core 

embeds two hash functions, SHA-1 and SHA-512, and the symmetric block cipher AES. The architecture of 

HSSec renders it suitable for widely spread applications with security demands. The presented co-processor 

can be used inevery system integrating standards such as IPSec or the upcoming JPSec and P1619. The main 

characteristic of the proposed implementation is common use of the available resources, to minimize further 

area requirements. Additionally the cryptographic primitives can operate in parallel, providing high throughput 

whenever needed. Finally the system can operate in ECB or CBC modes. The HSSec co-processor has 

relatively small area and its performance reaches 1 Gbps (AES, SHA-1 and SHA-512) for XILINX’s Virtex II 

FPGA family. 
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1   Introduction 
Software implementations of cryptographic 

algorithms cannot provide the necessary 

performance when large amounts of data have to be 

moved over high speed channels or store data in 

high-capacitance storage devices. Thus, leading 

service providers turn to hardware solutions aiming 

to high performance and competitive characteristics 

for their products. However, available cryptographic 

cores hardly meet these specifications, especially for 

applications requiring throughput over the 1 Gbps. 

Protocols such as IPSec [1], JPSec [2] and the 

upcoming IEEE P1619 [3] require solutions that can 

serve almost real-time system demands. 

     This race for high-speed cryptographic 

implementations was the motivation for the 

implementation of a High-Speed Secure (HSSec) 

co-processor. The HSSec core is a crypto-system 

that provides encryption/decryption using the widely 

used symmetric block cipher Rijndael [4], described 

in [5]. The HSSec embeds AES-128 and SHA-1 and 

SHA-512, which are fully described in Secure Hash 

Standard [6].  

     Every attempt until now to implement a core 

combining the latter algorithms was based on the 

use of existing separate cores [7–12]. However, each 

core is optimized for use as stand-alone, resulting in 

bulky implementations with low performance. The 

proposed co-processor exploits characteristics of the 

cryptographic algorithms. Additionally, HSSec 

allows concurrent operation of AES and SHA, 

resulting in parallel processing of a packet (or image 

frame). The modes of operation [13] are EBC 

(Electronic Code Book) and CBC (Cipher Block 

Chaining), and CFB and OFB are supported. The 

core is fully programmable making it suitable for 

use with a general purpose processor. In section 2, 

the implementation of AES-128, SHA-1 and SHA-

512 is prsented. In section 3, the architecture of the 

proposed co-processor is presented. In section 4, 

details of the implementation of HSSec are offered. 

Finally, conclusions are offered in section 5. 

 

 

2   Exploration of SHA and AES  
The HSSec, as it was mentioned until now, allows 

the parallel operation of three cryptographic 

primitives: AES-128, SHA-1 and SHA-512. The 

first step during development of the HSSec was to 

explore the three cryptographic primitives and find 

common characteristics that can help design and 

optimization process. Below the three algorithms are 

presented and at the end their characteristics are 

highlighted. 

 

2.1 SHA-1 exploration 
SHA-1 is the most commonly used hash function 

along with MD4-MD5 hash functions. SHA-1 may 

be used to hash a k-bits message, where 0 < k < 2
64
. 

During pre-processing phase the message is padded 
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and parsed into 512-bit message blocks, which are 

used to generate the message schedule Wt s. SHA-1 

requires 80 cycles to produce the 160-bit message 

digest. Each cycle requires the previous rounds 

results, Wt, as well as constant values Kt. The rounds 

of SHA-1 differ by the applied non-linear function 

ft. There are in total four non-linear functions, f1(0 ≤ 

t ≤ 19), f2(20 ≤ t ≤ 39), f3(40 ≤ t ≤ 59), f4(60 ≤ t ≤ 

79). 

 

2.2 SHA-512 exploration 
SHA-512 may be used to hash a k-bits message, 

where 0 < k < 2
128
. During pre-processing phase the 

message is padded and parsed into 1024-bit message 

blocks, which are used to generate the message 

schedule Wt. SHA-512 requires 80 cycles to produce 

the 512-bit message digest. 

 

Fig. 1  Partially unrolled SHA-1 operation block 

(two operations per cycle). 

 

     Each cycle requires the previous rounds results, 

Wt, as well as constant values Kt. Contrary to SHA-

1, all the operation blocks are identical. An 

interesting proposal to implement small-sized high-

speed hash functions is presented in [15]. It is based 

on pre-computing values with no dependencies and 

use them later in the operation block. This design 

approach when applied to the SHA-512 operation 

block, increases its throughput by 30% with 

negligible area overhead. The final implementation 

requires a padding memory of 1024-bits, eight 

temporal registers (64-bit) to store the intermediate 

hash values and sixteen temporal registers (32-bit) to 

store the message schedule Wt. 

2.3 AES-128 exploration 
The AES algorithm is a round-based, symmetric 

block cipher. It processes data blocks of fixed size 

(128 bits) using cipher keys of length 128, 196 or 

256 bits. HSSec embeds the AES-128 because it is 

the most popular variant of the algorithm. The 

algorithm can be split in three processes: 

 

Padding The 128-bits of the plaintext are 

aligned in the States matrix. 

 

Key expansion The initial 128-bit cipher key has to 

be expanded to eleven round keys of same length. 

The first round key is the cipher key (RoundKey0) 

and all subsequent round keys are produced when a 

function is applied to the previously generated round 

key.  

 

Encryption AES performs a number of 

transformations to the plaintext, and a 128-bit output 

block (called ciphertext) is produced as a result. 

 

     A variety of implementations can be found in the 

IP market and the international literature. Two 

works are of special value for the HSSec 

implementation. In [16] a highly regular architecture 

of AES-128 is given. However, the resulted 

throughput doesn’t meet the need for high 

performance. Also, the architecture cannot be easily 

modified to co-exist with SHA-1 and SHA-512 

cores. However, it served as the cornerstone of the 

HSSec architecture. In [17] a high-speed 

implementation of AES-128 is proposed, that 

requires 10+1 clock cycles to produce the ciphertext. 

This design approach was followed in order to 

implement AES for the HSSec. Combining the two 

works, it was possible to design a high-speed AES-

128 with low design complexity and disjoint the 

resources (such as memory) that can be used from 

SHA variants. Summarizing, to implement the AES-

128 there is the need of a padding memory of 128-

bits and sixteen temporal registers (8-bit) to store the 

State matrix. 

 

2.4 Exploration Results  
From the analysis of the requirements of the three 

algorithms it was derived that in the case of AES-

128, there is the need to process 128-bits in 10 clock 

cycles, in the case of a partially unrolled SHA-1, 

process 512-bits in at least 40 clock cycles and in 

the case of pre-computed SHA-512, process 1024-

bits in at least 80 clock cycles. The latter presents a 

symmetry in the width of processing data, indicating 
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that there must be available at least 128-bits every 

10 clock-cycles. This allows synchronized parallel 

processing of the available data in the padding 

memory. This means that instaed of requiring three 

padding units of totally 1664 bits, one padding unit 

of 1024 bits is more than sufficient.  

     Another remark that can be made, based on the 

analysis of the three algorithms, is the need of an 

extra block that provides data with time 

dependencies, such as the message schedules Wt 

and the constants for the SHA-1 and the SHA-512 

and the keys for the rounds of AES-128. Finally, 

there is also the need for a sophisticated register file 

to store immediate and/or initialization values for 

the three algorithms. 

 

 

3   System Architecture  
The HSSEC co-processor is based on a typical 

architecture with central control and processing 

elements (PE) in its periphery. The data inputs are 

32-bit wide, while output is offered through two 32-

bit wide ports. The handshake signals READY and 

SEND allow synchronization of the core for data 

receive/send. Furthermore, it controls the flow of the 

data in order to successfully provide the calculated 

outputs. Especially, signal SEND is also used as a 

halt signal, when the core outputs the message digest 

of SHA-512. Through the AES_en, SHA1_en, 

SHA2_en inputs the co-processor is programmed to 

enable operation of the appropriate algorithm. In the 

case that the three latter signals bits are set to 0 

HSSEC doesn’t process data. The MODE input is 

responsible for indicating the operation mode of 

AES-128, selecting between the ECB (Electronic 

Code Book) and the CBC (Cipher Block Chaining). 

Also, signal Key indicates that a key is available. 

Finally, outputs OUT hot, OUT AES, OUT SHA1/2 

signal output of the processed data (ciphertext, 

message digest. Due to the limitation that only one 

of the three cryptographic blocks can take control of 

the data bus at every time instance, when OUT_hot 

is set to 1, then OUT_AES is set to 1 if it has the 

control of the output. In the case that OUT_AES is 

set to 0, then surely one of the SHA blocks drive the 

data bus, thus OUT_SHA1/2 is sufficient to 

distinguish the originator of the message digest. 

     In Fig. 2 the architecture of HSSec is offered in 

detail. As it can be seen there is a central Control 

Unit (CU) to manage data processing and 

communication with the rest of the world. The 

processing blocks that implement the three 

algorithms are placed in parallel and share a 

common global data bus (64-bits). The same bus 

provides data to the memory block (considering 

memory hierarchy shown in Fig. 2 as one block and 

to the Key Scheduler. The Key Scheduler block is 

responsible for the key expansion of AES-128 and 

the generation of the message schedules.     

Additionally it provides the constants of the SHA 

hash functions. In order to produce a new round key, 

two transformations have to be performed in the 

Key Scheduler, RotWord and SubWord. The first 

one simply cyclically shifts the bytes of the first 32-

bit word of the previous key by one position to the 

left. SubWord on the other hand performs the 

SubBytes transformation to each byte of the rotated 

word. Simple bitwise xor is needed in order to 

produce the final round key. 

 

Fig. 2. HSSec core architecture 

 

3.1 Area requirements and performance  
The HSSec architecture has some key 

characteristics. HSSec’s area is kept low due to the 

sharing of the memory block (including the padding 

unit and the temporal registers. Design complexity 

has kept also low in order to gain the regularity this 

architecture offers. In general the main benefit in 

terms of area requirements, is the reduction of each 

common but unshared resource (triplication) to one 

but fully shared. In the case of performance, the 

parallelism of the three cryptographic blocks and the 

selection of high-speed design approaches offered 

the noteworthy throughput of 1 Gbps for every 

cryptographic block. In fact, it is the critical path of 

the SHA-512 that limits performance of HSSec to 

this level. In the case of multiple clocks throughput 

could even exceed the 2 Gbps.  

 

3.2 Memory organization  
Successful selection of the memory organization is 

significant for the correct operation of HSSec. The 

Memory Block is organized in three main parts. The 
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first part is a collection of registers that store the 

initialization values for the three cryptographic 

algorithms. The second part is a general-purpose 

register file where temporal values are stored for 

quick access. The third part is the padding unit 

which is responsible for storing the fetched data. 

     This unit has been organized in 8 banks of 128-

bits wide. Each bank corresponds to the minimum 

data required by one of the algorithms (AES-128) as 

input. Due to the regularity of the system, 4 

consecutive banks form the input message for the 

SHA-1 algorithm, while 8 consecutive banks form 

the input message for the SHA-512 algorithm. Thus, 

8 banks of memory (128-bits each) are forming the 

padding unit allowing high-speed processing of the 

data. In Fig. 3 the memory organization is 

illustrated. 

 

Fig. 3. Memory organization of HSSec. 

 

3.2 Synchronization of HSSee 
The main benefit of the HSSec is the 

synchronization of the three cryptographic blocks. 

The exploration of the three algorithms helped 

significantly before entering the system capture 

process. The selection of the appropriate design 

parameters and proposed approaches was the key for 

successful co-operation of the three cryptographic 

blocks without synchronization problems or tricky 

solutions.  

     Selecting an AES-128 design that offered high-

speed ciphering in 10+1 clock cycles set the first 

limiting factor that had to be followed in all the 

design process and ensure that it was guaranteed. 

Thus, 128 bits of data had to be processed in at least 

10 clock cycles. Considering that the 32-bit input of 

HSSec required 4 clock cycles to fetch the data in 

the padding unit, the first limitation seemed to be 

guaranteed. Furthermore, after the fetching of the 

first 128 bits, Control Unit was responsible to pre-

fetch data, through the I/O interface, 4 clock cycles 

before the calculation of the ciphertext. The output 

of the ciphertext is performed through the Data I/O 

of the I/O Interface. Due to the width of the output 

port (32-bits) there is the need for 4 clock cycles 

(128 bits= 4 x 32 bits) to successfully send the 

whole ciphertext. The architecture of HSSec ensures 

that there is at least 10 clock cycles that interpose 

between successive calculations of two ciphertexts. 

Thus, there is no violation of the synchronization of 

the system (4 cycles to pre-fetch data and 4 cycles to 

output ciphertext is less than the 10 cycles 

available). 

     In the case of the two hash functions, 

synchronization is much simpler. Input of the two 

cryptographic blocks SHA-1 and SHA-512 is 

provided through the very same Data I/O port that is 

used for the AES-128. Data are padded in the 

memory block in banks of 128 bits. This size was 

selected to satisfy primarily the AES-128 algorithm. 

However, it was observed later on that this size was 

ideal for all the three algorithms. Thus, 4 banks are 

required for the input message of SHA-1 (512 bits 

input) and 8 banks are required for the 

corresponding input message of SHA-512 (1024 bits 

input). The regularity of the architecture appeared in 

this exact point. However, there was a significant 

issue that found its solution almost instantly. SHA-1 

and SHA-512 require exactly the same number of 

clock cycles to generate the message digest. 

However, this is unacceptable because of the 

processed data. SHA-512 calculates its message 

digest for 1024 bits in 80 cycles and thus SHA-1 has 

to generate in the same time two message digests, 

one for each 512-bits block. The solution was instant 

and the initial limitation that was posed for the AES-

128 was extremely handful. Thus, knowing that each 

bank (128-bits) are processed in at least 10 cycles, 

then there are 40 clock cycles to process the SHA-1 

input message. In [14] there is a structure of a high-

speed SHA-1 that performs message digest 

calculation in 40 cycles. Regarding SHA-512, time 

to process 8 banks (1024 bits) is at least 80 cycles, 

exactly the required number of cycles to generate 

the message digest.  

 

 

4   Implementation Results 
The HSSec cryptographic co-processor was captured 

using Verilog HDL. XST and Leonardo Spectrum 

have been used for synthesis. XST has been used to 

synthesize only the modules that infer the 

BlockRAMs, because Leonardo Spectrum [18] does 

not infer dual-ported BlockRAMs. The Xilinx ISE 
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5.2 tools have been used for the implementation of 

the design and ModelSim was the simulation 

environment (for both logic and timing simulation). 

     Xilinx Virtex-II XC2V1000bg575 (speed grade -

5) has been chosen as the target device. This device 

has 5120 CLB Slices which provide a total of 10240 

LookUp Tables and 11224 Dffs or latches. Total 

memory available in terms of BlockRAM is 40 

blocks of 16kbits each. Detailed analysis of the 

Virtex-II structure may be found in [19]. Table 1 

presents detailed implementation results for the 

HSSec cryptographic co-processor. The 

implementation was tested in depth both 

functionally and operationally. There was no report 

for erroneous or generally unexpected behavior. 
 

TABLE 1 

Implementation Results 

Device Utilization (XC2V1000bg575 -5) 

Resources  Used  Available  

(%) 

IOs   295  328   90 

CLB Slices  3213  5120   63 

BlockRAMs  9  40   23 

Timing Report (XC2V1000bg575 -5) 

Clock Freq. (MHz)  80.21 

Clock cycle (ns)   12.47 

Throughput (Mbps) 

AES-128   1026.68 

SHA-1    1026.68 

SHA-512   1026.68 

 

 

5   Conclusion 
HSSec is a cryptographic co-processor, specially 

designed to support security systems requiring AES-

128 ciphering parallel to SHA-1 and SHA-512 

hashing. The latter algorithms are commonly used in 

network applications and have been selected for the 

upcoming protocols JPSec [2] and P1619 [3]. The 

architecture of HSSec allows parallel operation of 

the three cryptographic primitives. Special design 

effort was given to benefit the system with 

regularity, which enabled low-area requirements. 

There are no synchronization issues due to the 

appropriate selection of the AES-128, SHA-1 and 

SHA-512 implementations. 

     Area requirements have been kept low. However 

this didn’t had a bad effect to the coprocessors 

performance. HSSec was implemented for XILINX 

Virtex-II FPGA device family. Its operation and 

functionality have been validated and the 

implementation was evaluated. Area was kept low, 

as expected, while the three cryptographic primitives 

performed a 1Gbps throughput. The achieved 

throughput can be further increased using a multi-

clock design strategy, which however would affect 

the characteristics of HSSec. 
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