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Abstract: - This paper presents a novel approach to tolerating transient data faults that may affect the software 
executing on commercial-of-the-shelf (COTS) embedded processors. The main concept of the approach is the 
use of information redundancy, in which the program user data and user stack areas are duplicated byte-for-
byte in areas of RAM known as mirror arrays. We also present a novel approach to implementing the 
management of this data duplication and fault detection/correction in software which results in highly 
readable, portable code. Preliminary results are reported for a matrix multiplication program which indicates 
the effectiveness of the technique. 
 
Key-Words: - Software Fault Tolerance, Embedded Systems. 
 
1   Introduction 
Modern control systems are almost invariably 
implemented using some form of embedded digital 
computer system [1].  The dominance of digital 
systems in this field is a consequence of the low 
cost, increased flexibility, greater ease of use, and 
increased performance of digital control algorithms 
when compared with equivalent analogue 
implementations [2][3]. 
    When such embedded systems are used in 
situations where their correct functioning is vital, 
special care must be taken to ensure that the system 
is both reliable and safe [4][5]. In particular, care 
must be taken to ensure that both transient and 
permanent memory faults - such as Single Event 
Effects (SEE’s) caused by particle strikes - must not 
cause the program execution to veer from its desired 
trajectory and cause the system to enter potentially 
dangerous situations. 
    Previous research has demonstrated that SEE’s 
may manifest themselves in a variety of ways. They 
may cause transient disturbances known as Single 
Event Upsets (SEU’s) - manifested as random bit-
flips in memory. They may also cause permanent 
stuck-at faults over an array of memory, caused by 
damage to the read/write circuitry or chip latchup. 
Failure rates for SEU’s in ground-based installations 
are in the region of 10-9 - 10-8 failures per bit per 
hour [6] and permanent failures in the region of 10-8 
- 10-6 failures per device per hour [7]. 
    Recent years have seen the development of 
several software-based approaches to implementing 
transient fault detection on COTS processors, which 

due to their low-cost are not radiation hardened. 
These techniques are designed to detect errors 
caused by transient or permanent hardware faults by 
relying on specially crafted software, without 
resorting to special-purpose hardware. 
    Many of the techniques, for example [8][9][10], 
are based on similar approaches, in that 
modifications are made to the application code to 
detect deviations from the expected execution flow. 
If any deviations are detected, program execution is 
suspended and an error recovery procedure is called 
(oftentimes simply resetting the processor to a 
known state). They are based around data 
duplication, instruction duplication and control flow 
checking. 
    Although providing relatively high levels of fault-
tolerance, such approaches are problematic (from 
the point of view of the embedded system 
developer) for two main reasons. The first is that 
when data duplication is employed, the developer 
has little control over where the duplicated copies 
reside in memory. For example, when temporary 
variables are declared, they are all placed by the 
compiler in the user stack area - next to one another 
- as such, they are at risk of a common failure 
should the memory chip implementing the user stack 
become faulted. 
    The second is the sheer complexity involved in 
applying the techniques. Many are only suitable for 
use with automatic code generators, which may be 
problematic from a safety perspective and may 
cause problems with certification. Conversely, when 
the techniques are applied by hand, the complexity 
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of the source code increases dramatically, and the 
basic meaning of the code itself becomes obscured - 
this can cause problems with maintainability and 
testing. For example, consider the segment of C 
code shown in figure 1. 
 
01: #define N (10) 
02:  int i; 
03: int a[N],b[N]; 
04:  for(i=0;i<N;i++) 
 05:  { 
 06:  b[i]=a[i]; 
 07:  } 

  
Fig. 1: Un-hardened code 
 
To most programmers, the meaning of the code is 
self-explanatory; to copy and array of 10 integers. 
Now, consider the same code, hardened using the 
technique suggested by Redaudengo et al. [10]. This 
is shown in figure 2 (without the required 
initialization code). The total code segment, 
including the initialization which must be called 
before each operation, and the XOR macro CHK, is 
in excess of 36 lines in length; the meaning of the 
code is also somewhat obscured. Additionally, the 
variable i in figure 2 remains un-hardened; and the 
arrays a0, b0, a1 and b1 all reside alongside each 
other in the same area of memory.  
     
01: #define N (10) 
02:  int i ; 
03: int a0[N], b0[N] ; 
04 int b1[N], b1[N] ; 
05 int c0, c1 ; 
06:  for ( i = 0 ; i < N ; i++ ) 
07:  { 
08:  c0 = c0 ^ b0 ; 
09:  c1 = c1 ^ b1 ; 
10:  b0 [i] = a0 [i] ; 
11:  b1 [i] = a1 [i] ; 
12:  c0 = c0 ^ b0 ; 
13:  c1 = c1 ^ b1 ; 
14:  if ( a0 [i] != a1 [i] ) 
15:   { 
16:   if (CHK ( a0, b0 ) == C0 ) 
17:    { 
18:    a1 [i] = a0 [i] ; 
19:    c1 = c0 ; 
20:    } 
21:   else 
22:    { 
23:    a0 [i] = a1 [i] ; 
24:    c0 = c1 ; 
25:    } 
26:   } 
27:  } 
 
Fig. 2: Hardened code 
 

   In this paper, we will attempt to address these 
problems of code complexity, obscurity and variable 
location, and propose a novel methodology we have 
implemented for this purpose. The paper is 
organized as follows. In Section 2 we will describe 
the memory architecture of a typical COTS 
microcontroller. Section 3 will introduce the concept 
of the mirror array. In Section 4 we will describe 
how the redundancy management can be achieved in 
C and C++ programs, resulting in code that is highly 
readable and maintainable. Section 5 describes an 
experimental study performed to asses the 
effectiveness of the methodology. The paper is 
concluded in Section 6. 
 
 
2   Embedded System Memory 
Before describing the methodology in full, we will 
first describe the architecture of a typical embedded 
processor. Many embedded processors employ 
either a Harvard architecture – in which the code 
and data memory areas employ a different address 
space - or Von Neumann architecture, in which the 
code and data memory share a common address 
space. The techniques we describe are equally 
applicable to both architectures. It is common for a 
processor to have a small amount of on-chip 
(internal) RAM, termed the IRAM. It may or may 
not have a small amount of on-chip ROM or FLASH 
for code storage. 
   At the lowest address spaces, there will normally 
be an interrupt vector table, implemented in ROM. 
The lowest of these contains the reset vector – upon 
start/reset, the processor loads this vector from 
address 0h and jumps to the appropriate memory 
address where program execution commences. 
Following this vector table, the IRAM will 
commonly be implemented. The system designer is 
then free to use the address space following the 
IRAM for implementation of either externally 
implemented RAM or ROM. A typical configuration 
for a Von Neumann style architecture is shown in 
figure 3. 
    The CPU registers, system stack and Special 
Function Registers (SFR’s) will be implemented in 
the IRAM; normally there is space for a small 
amount of user variables in this area. Since most 
embedded systems utilize a scheduler (a small 
specialized RTOS), a developer will typically 
implement the scheduler data areas in the remaining 
IRAM to reduce overheads, as access to this data 
area is faster than XRAM. The user stack and all 
task data will then be implemented in XRAM. This 
flexibility in assigning areas of XRAM, possibly 
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even over multiple (physically separate) memory 
chips, can thus be exploited to increase reliability. 
 

 
 

Fig. 3: Typical address space usage 
 
Before describing this process, we will state a 
number of assumptions that will be used throughout 
the remainder of the paper: 
 
• We assume that the designer wishes to duplicate 

data in the user stack and task data areas, both 
implemented in XRAM1. 

• The management of this duplicated data should 
be as straightforward as possible, with minimal 
alterations to the source code. 

• For the remainder of this paper, we will use the 
notation tByte to represent an unsigned 8-bit 
value, tWord to represent an unsigned 16-bit 
variable and tFloat to represent a floating point 
variable. 

• We assume that if an uncorrectable data 
inconsistency is detected, the processor is forced 
into a reset mode to run pre-programmed built-
in-test routines - other behavior may be more 
appropriate depending on the application. 

 
 
3 Mirror Arrays 
The mirror array is an entirely replicated area of 
external memory, shifted from its base address by an 
offset value, which is written to and read from every 
time the corresponding primary area is written to or 
read from in the original. The advantage of using 
such an approach is that by choosing appropriate 
offset values, the programmer can specify absolute 

                                                           
1 Hardening of data in the IRAM areas is of course 
possible, but a description of such a process is not 
within the scope of the current paper 

addresses for these mirrors to reside in; they can also 
reside in physically separate memory devices, from 
different manufacturers. This can potentially 
increase system reliability by avoiding common-
mode failures in memory devices. 
    Such arrays can be used to provide data 
redundancy for global, persistent data, and since the 
user stack can also be mirrored, temporary variables 
can also be duplicated in the mirror.  
    Suppose a designer has created a working 
(standard) program which uses 200h bytes of 
XRAM, at addresses 0x10000 to 0x101FF. The user 
stack is located in the first 100h bytes, and the 
remaining data is global in scope. The entire 
contents of this data area can then be ‘mirrored’ at 
address space 0x11000 to 0x111FF - assuming the 
memory is physically present - shifted by a fixed 
offset of 1000h. This process can be repeated at 
other fixed offsets in memory, and the required level 
of data duplication can be achieved. This is shown 
in figure 4. For space reasons, in this paper we will 
primarily describe the duplex implementation. 
However, we have also considered the triplex 
implementation; this can be achieved with very little 
alteration to the underlying method. 
 

 
 

Fig. 4: Mirror array concept 
 
    In order for this methodology to work correctly, 
we require some way to manage this redundancy in 
the program code. If this can be achieved, data can 
be managed dynamically - as and when it is written 
to. Similarly, when a variable is read, we wish to 
also read the duplicated data areas and verify the 
data integrity. In section 4 we describe such a 
methodology for use with C/C++ compilers. 
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4   Implementation 
Due to the unnecessary overheads associated with 
many C++ programs, many resource-constrained 
embedded programs are written only in C [11]. 
However, many C compilers have built-in C++ 
features - indeed these extra features are often 
implemented as a built-in pre-processor for a 
standard C compiler. If care is taken in the 
programming approach, objects may be compiled in 
C++ and exported to ordinary C programs using the 
extern “C” compiler directive, with little/no 
processing or memory overheads. The code 
described in this section was developed using the 
Keil embedded C/C++ compiler [12] – other 
compiler platforms may use slightly different 
terminology. 
    In order to implement the proposed approach, and 
make its use as transparent as possible to the 
programmer, we implemented three new basic data 
types as C++ classes. These new data types can then 
be exported to ordinary C programs if required. We 
created the data types duplex_tByte, duplex_tWord, 
and duplex_tFloat, to be used, from the 
programmers perspective, identically to the basic 
data types representing a byte, word and float, with 
the exception that read and write operations to the 
basic data invoke code to implement the mirror 
arrays. 
    Each class contains a single private data 
declaration, Primary_Data, corresponding to the 
basic simplex data type. We then create the required 
read and write operations on this data by defining 
new operator member functions using the operator 
keyword. By way of example, we show the member 
functions for the assignment and reference 
operations for the duplex_tByte data type in figure 
5. Line 1 of this code defines an offset in memory of 
1000h for the duplicated data. The inline keyword 
preceding the function deceleration of line 2 
indicates that the code is to be executed inline, not 
as a function call – this minimizes the processing 
overheads. The remainder of line 2 indicates that the 
code should be executed when an assignment is 
made to the class, and passed a value of type tByte. 
Line 4 features the statement _atomic_(0). This 
instructs the compiler (and microprocessor) to treat 
the following instructions, until the _endatomic_() 
statement is reached (line 6 in this case), as a single 
(uninterruptible) machine instruction. This is 
important to maintain data consistency in the mirror 
in pre-emptive systems. In line 5, we then assign the 
value passed to the class to both the primary data 
and the corresponding data in the mirror array. The 
function then exits. 
 

01: #define MEMORY_OFFSET (0x1000) 
02: inline void duplex_tByte::operator = ( tByte Value ) 
03:  { 
04 _atomic_( 0 ) ; 
05     Primary_Data =  * ( &Primary_Data +  

MEMORY_OFFSET ) = Value ; 
06 _endatomic_() ; 
07 } 
08 inline tByte duplex_tByte::operator () ( void ) 
09 { 
10 atomic_( 0 ) ; 
11 If ( Primary_Data == *( &Primary_Data +  

MEMORY_OFFSET ) ) 
12  { 
13  return ( Primary_Data ) ; 
 14  _endatomic_() ; 
15  } 
16 else 
17  { 
18  _trap_( 0x00 ) ; 
19  _endatomic_() ; 
20  }  

 
Fig. 5: duplex_tByte operator functions 

 
    Line 6 indicates that the following function code 
should be executed, again inline, when the data type 
is referenced. In line 11, we compare the primary 
data to the corresponding data in the mirror array. If 
the data is consistent, we return the value and exit 
the function. If not, the statement _trap_( 0x00 ) on 
line 18 executes a full system reset - this is 
equivalent to a reset by an external watchdog. In the 
triplex data type, the assignment and reference 
functions are suitably modified to incorporate the 
third data area; the reference function additionally 
performs a 2 from 3 vote if possible, and executes a 
reset if all the data are inconsistent. 
    On reset, the chip first enters a test mode where, 
among other things (such as ROM checksum tests), 
the RAM functionality is verified to detect faults, 
using a similar method as outlined in [13] before 
normal program execution commences. If a faulty 
RAM is detected, the system can enter a safe state, 
and perform appropriate external signaling to 
maintain system integrity. 
    Each of the C/C++ operators, such as ++, --, <=, 
and so on, were similarly implemented as inline 
member functions for the new data types. Thus, in 
combination, this ensures inter-operability of the 
new classes with each other and the basic data types; 
the implementation (and compiler consistency 
checking) of the duplicated data is completely 
hidden from the programmer. 
    Although we have implemented constructors for 
each data type to initialize the data in the mirror 
areas, it is beneficial to initialize the mirror areas as 
part of the initialization code. This can be achieved 
either in assembly, as part of the XRAM test, or 
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directly in C. The _at_ or MARRAY specifiers can 
be used with the Keil compiler to specify an 
absolute area for direct memory access in C. 
    The resulting data types are highly portable, and 
do not obfuscate the meaning of the hardened code. 
With reference to figure 1, applying the code 
hardening methodology we have described produces 
the source code shown in figure 6. From this figure 
it can be observed that the code length is identical to 
the original and is also highly readable. 
Additionally, we note that the variable i is also 
hardened in this case. 

 
01: #define N (10) 
02:  duplex_tByte i; 
03: duplex_tByte a[N],b[N]; 
04:  for(i=0;i<N;i++) 
 05:  { 
 06:  b[i]=a[i]; 
 07:  } 

  
Fig. 6: Hardened code 
 
    The methodology does not require the use of 
automatic code generators; this simplifies the 
process of code certification, as no ‘extra’ 
components need to be certified as the process of 
certifying the compiler will be required regardless. 
All that is required is for the programmer to have a 
basic understanding of the meaning of the new data 
types. It also allows a system developer to first 
implement the system in a simplex fashion, 
determine the memory requirements for the system, 
then harden the code when the required memory 
offset has been determined. The hardening 
procedure can be accomplished in seconds. 
    In the following section we describe preliminary 
experimental results we have obtained from 
applying the technique. 
 
 
5   Experimental Results 
To asses the effectiveness of the proposed 
methodology, we performed several fault-injection 
studies on an Infineon C167 microcontroller [14] 
executing a 4x4 matrix multiplication program. The 
experimental set-up is shown in figure 7. 
   During each experiment, we injected transient 
faults into the XRAM data area at random times, 
performing random bit-flips in all the user data 
areas. The fault injection was performed using a 
high-speed serial link and a small monitor program 
in the C167. The main program loop first initializes 
the source matrices with values hard-coded into the 
ROM. The matrix multiplication is then performed. 
The values contained in the result matrix are then 

compared with values coded into the program ROM. 
The process then repeats endlessly. Any failures, 
detected faults or corrected faults are reported to the 
host PC via the serial link. 

 
Fig. 7: Experimental setup 

 
    We considered three different implementations of 
the program; the un-hardened (simplex) case, and 
two hardened versions (duplex and triplex) of the 
program. The application of any such technique has 
an impact on the required system resources; we 
begin by describing the resulting code size, memory 
requirement and execution time of each iteration of 
the program. The results are shown in table I. 
     
Table I: Required system resources 

 
    In table II, we summarize the results we recorded 
during the fault injection experiments. In the duplex 
and triplex cases, we increased the number of faults 
injected to reflect the increased size of the program 
data areas. Fault effects are classified into one of 
four categories as follows.  
 
• Effect-less: the fault does not result in a 

computation failure. 
• Detected: the fault is detected but cannot be 

corrected – the iteration is restarted after 
processor reset. 

• Detected and corrected: the fault is detected 
and has been corrected. 

• Failure: the fault is not detected or corrected 
and results in an invalid computation output. 

 
    From table I, we can see an increase of 
approximately 4.5% and 14.1% increase in the 
code size for the duplex and triplex case 

Resource  Simplex Duplex Triplex
Code Size (b) 1956 2044 2232 

Memory Size (b) 204 408 612 
Execution Time (ms) 0.918 2.16 2.61 
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respectively, 100% and 200% increase in data 
memory, and a 135.3% and 184.3% increase in 
execution time. In terms of data memory increase, 
the duplex and triplex case invariably causes a 
doubling or trebling of each of the hardened 
variables, plus the user stack. The code size 
increase in this case is small; despite the use of 
inline function calls. The increase in execution time 
is almost doubled and tripled by the application of 
the technique; this is however to be expected as 
each hardened variable uses instruction replication 
and comparison. In cases where the software in not 
data intensive (unlike this example) or only 
portions of the data need to be hardened, then the 
increase in execution time will be must greatly 
reduced; we present here a ‘worst-case’ analysis of 
the method. 
   
Table II: Fault injection results 

 
  Simplex Duplex Triplex

Injected 10000 20000 30000 
Effect-less 1289 2448 3744 
Detected 0 17552 0 

Detected/Corrected 0 0 26256 
Failures 8711 0 0 
 

    Now considering table II, we can see that in each 
case approximately 12% of each of the injected 
faults was effect less. In the simplex system, the 
remaining faults all caused failures. In the duplex 
system, all remaining faults were detected; no 
failures occurred. In the triplex system, all 
remaining failures were detected and corrected; the 
system is fully fault-tolerant. From the perspective 
of safety critical systems, both the duplex and triplex 
system were capable of preventing failures resulting 
from the incorrect computations of the simplex case.  
    When compared to techniques such as [8][9][10],  
these results suggest that both the duplex and triplex 
techniques are comparable in terms of memory size 
increase, and favorable in terms of code segment 
increase and execution time. Additionally, these 
results show that high levels of fault detection and 
tolerance to permanent and transient failures in 
RAM can be achieved without the need for 
automatic code generators; and the impact on source 
code readability and maintainability is negligible. 
 
 
6   Conclusion 
In this paper, we have presented a novel approach to 
software implemented fault-tolerance that can be 
used in embedded systems. The approach relies on 

data and instruction duplication. We have shown 
how new data types can be implemented as C++ 
classes and exported into a C program. We have 
shown that the method is easily applied, results in 
readable code, and is able to tolerate 100% of the 
injected faults on the benchmark described. These 
results suggest that the method may be highly 
applicable to safety-related embedded system 
designs based on COTS processors. 
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