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Abstract: - An exact solution of an infinite plate on elastic foundation under impact loading is presented. The 
formulation is based on application of Laplace and Hankel integral transforms and Bessel functions’ properties. 
Representative examples are studied and the obtained solutions are discussed.  
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1 Introduction 
Plates on elastic foundation are often used in civil or 
mechanical engineering problems, such as building 
infrastructures, tanks or silos foundations, aerospace 
engineering etc. The reaction of the foundation at 
these problems is approximated to be proportional 
of the plates’ deflection w at each point. Numerical 
procedures to solve such problems are mostly based 
on finite elements (Cheung and Zienkiewicz [1]), 
finite differences (Long and Alturi [2], Krysl and 
Belytschko [3]) or meshless methods (Van Daele et 
al. [4], Melerski [5]). An interesting hybrid 
procedure combining finite elements and analytical 
method to analyze annular plate-soil interaction is 
presented by Chandrashekhara and Antony [6]. An 
alternative numerical procedure for the circular plate 
on elastic foundation developed by Utku et al. [7] 
represents the considered plate as a series of simply 
supported annular plates resting on support springs 
along their common edges and obtains the stiffness 
coefficients by the classical thin plate theory. Most 
of the above numerical methods solve the case of 
the loading by static loads. Analytical solution of 
the above problem have been published recently by 
Pavlou [8] also for the case of static axi-symmetric 
loads. However, during earthquake or other dynamic 
loading conditions the plates on elastic foundation 
may subjected in dynamic loads. In the present work 
the improvement of the previous solution of Pavlou 
[8] is presented in order to cover the impact loading 
case. The proposed analytical method is based on 
Laplace and Hankel integral transforms as well as 

on Bessel functions’ properties. Using these 
transformations, the fourth order differential 
equation describing the deflection w of the plate is 
simplified into a simple algebraic one with respect 
of the Laplace-Hankel transformed deflection. The 
required solution is obtained using inverse Hankel 
and inverse Laplace transforms.  
 
 
2 Formulation of the problem 
An infinite elastic plate with thickness h is 
considered to be founded on Winkler type 
foundation. The plate is loaded by load q** = q - q*  
where q is the external step impact load 
 

[ ])()()(),( oo rrHrHtqtrq −−= δ   (1) 
 
and q*(r) is the foundation reaction which is 
proportional to the vertical deflection w(r,t) of the 
plate, i.e. 
 

),(),(* trwktrq s=     (2) 
 
In eqs. (1) and (2), δ(t) is the Dirac delta function of 
the time t, H(r) is the Heavyside step function of the 
radius r and  ks is the modulus of the Winkler 
foundation. 
The equilibrium of the bending moments in an 
elementary part of the plate results (Timoshenko 
[9]) to: 
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where Mr and Mt are bending moments per unit 
length along circumferential and radial sections of 
the plate respectively, while Q is shearing force per 
unit length of a cylindrical section of radius r. 
Neglecting the small quantities, above equation can 
be written: 
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Taking into consideration the well known 
(Timoshenko [9]) relations between the bending 
moments and the deflection 
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where ν is the Poisson ratio, E is the modulus of 
elasticity and D the flexural rigidity given by  
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it can be written: 
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The equilibrium of the vertical forces in an 
elementary part of the plate results to 
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where  ρ is the density of the material. Neglecting 
the small quantities, above equation can be written: 
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With the aid of eq.(8) and eq.(2), above equation 
results to 
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where q(r,t) is the loading given by eq.(1) while λ is 
given by 
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and  is the differential operator given by 4∇
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3 Analytical solution 
To solve the differential equation (11) the Laplace 
and Hankel integral transforms and their inverse 
forms will be used. The definitions of these integral 
transformations are: 
 
Laplace and Inverse Laplace transform: 
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where L and L-1 are Laplace and inverse Laplace 
transform operator respectively. 
 
Hankel and Inverse Hankel transform: 
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where  is the n-th Bessel function and )(xJ n
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{ }ξ);(rfH n , { }rfH nn );(1 ξ−  are the Hankel and 
inverse Hankel transform operator respectively. 
 
Considering the following  properties (Sneddon(a) 
[10]) of Laplace transform: 
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and 
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and taking the operator L in eq. (11) it can be 
written: 
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Taking the operator  to eq. (21) it can be 
written: 
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Considering the substitution 
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the transformation can be 
written: 
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According to Sneddon(a) [11], the following property 
of the Hankel transform will be used: 
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where 
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Taking into account eqs. (26), (27) and putting n=0, 
it can be written: 
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In above equation, if w*(r,p) is inserted instead of 
f(r,p) the following form will be resulted: 
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Considering eqs. (23, 29) the eq. (28) takes the 
form: 
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This equation with the aid of eq. (29) results: 
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Then, eq. (22) gives: 
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Considering eq. (33), the analytical solution of the 
differential equation (21) can be written: 
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Considering the definition of the inverse Hankel 
transform given in eq.(17) it can be written: 
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Taking the operator L-1 in above equation the 
required solution w(r,t) can be obtained: 
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Taking into account the equation (Prudnikov et. al. 
[12]): 
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The final solution can be written 
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4 Example: Solution of infinite plate 
on elastic foundation under impact 
uniform load q0 lying in the finite area 
0<r<r0  
An infinite plate on elastic foundation with 
geometric and mechanical parameters 

1,1 == hρλ  is considered. An impulse uniform 
loading   acting at time t=0 and lying 

in the finite area  

1000/ =Dqo

00 rr <<  , where 50 =r , is 
applied. With the aid of the well known software 
“Mathematica” the wave propagation w(r,t) for the 
times t=0.005 (Fig.1), t=0.007 (Fig.2) and t=0.010 
(Fig.3) is calculated by the eq.(40). The results for 
these times are demonstrated in the following 
figures indicating the decreasing of the deflection as 
the time is increased within the time interval [0.005, 
0,010]. 
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Fig.1 Plate deformation at t=0.005 

 

-10

-5

0

5

10
-10

-5

0

5

10

-4

-2

0

-10

-5

0

5

 
Fig.2 Plate deformation at t=0.007 
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Fig.3 Plate deformation at t=0.010 

3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 2007           82



 
5 Conclusions  
A new analytical method based on Laplace and 
Hankel integral transforms and Bessel functions’ 
properties was derived to solve the problem of 
infinite plate on elastic foundation under impact 
loading. This solution can be used as a Green’s 
function in order to solve boundary-value problems 
of finite circular or annular plates on elastic 
foundation under impact axisymmetric loads. Some 
real examples ware solved indicating the wave 
propagation for several values of the time.  
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