

Analytically Tuned Parameters of Simulated Annealing
for the Timetabling Problem

 JUAN FRAUSTO-SOLÍS, FEDERICO ALONSO-PECINA

Instituto Tecnológico y de Estudios Superiores de Monterrey, Cuernavaca, Morelos, México

CINHTIA GONZALEZ-SEGURA

Universidad Autónoma de Yucatán

Abstract: - University Timetabling problem (UTT) has a computational complexity that grows exponentially
as the size of the problem augments, then random algorithms become indispensable to solve it; among these
algorithms, Simulated Annealing (SA) is one of the most efficient algorithms. However, SA obtains the
optimal solution or a very good approximation one, but only when SA parameters are well tuned. SA requires
an initial solution for solving UTT. Besides, analytical tuning strategies for SA in UTT have not been
explored. In this paper a SA Markov tuning strategy and a heuristic to generate a feasible solution are
proposed. This strategy improves the performance of SA algorithms for ETT as is shown with experimental
instances taken from PATAT benchmark.
.

Key-Words: - Timetabling, Simulated Annealing, Optimization

1 Introduction
This paper proposes a solution to an Educational
TimeTabling problem proposed in PATAT [1],
and named University Timetabling (UTT) which
has a computational complexity that grows
exponentially as the size of the problem is
increased. UTT has been solved with many
heuristics as Simulated Annealing (SA) [2]
[3],[4] Tabu Search [5][6], Ant Systems [7], and
so on. A common approach to solve UTT is
finding an initial feasible solution with some
heuristics specially developed for that purpose;
then a random algorithm derived from well
known metaheuristics [6], [8], [9] is commonly
used to improve this solution. SA not always
obtains good results for UTT [5], because SA
should have a good neighborhood and be well
tuned. In this paper we propose to solve UTT
using two particular neighborhoods, and a
Markov tuning strategy. This strategy allows a
best performance of SA algorithms for UTT as is
shown with experimental instances taken from
PATAT benchmark [1].
 The paper is organized as follows. Section 2
includes the PATAT problem description and the
mathematical model. Section 3 presents the
implementations of SA tuned experimentally.

Section 4 describes the analytical tuned parameters
and its improvements. Finally, Section 5 and Section
6 include the results and the conclusions
respectively.

2 Problem Description
For Timetabling problems, as for any other NP
problem, it is not efficient to apply exhaustive
and/or deterministic methods due to their
exponential complexity [8]; also, it is useful to
create automatic methods to generate the best
feasible solution. To assure the validity of the results
obtained with the algorithms tested here, instances
taken from PATAT’s benchmark (Practice and
Theory of Automated Timetabling) are used [1].
The selected problem consists of: i) a set E of events
to be scheduled in 45 periods of time (5 days of 9
intervals every one), ii) a set of classrooms (R) that
hold the events, iii) a set of students (U) that attend
the events, and iv) a set of features (F), that should
be satisfied by the rooms because the requirements
of the events. Every student will attend some events
and every room has a capacity.
 A feasible timetable is one in which all the
events have been assigned in a specific timeslot, in a

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 17

specific classroom, and all of the following hard
constraints must be completely fulfilled:
• No student attends more than one event at the

same time.
• The classroom chosen for an event is big

enough to house all the attending students
and it satisfies all the technical features
required by the event.

• Only one event is hold in each classroom at
any specific timeslot.

In addition, is desirable that the next soft
constraints be satisfied:
• A student should not have a class in the last

slot of the day
• A student should not have more than two

classes consecutively
• A student should not have a single class on a

day.
 The PATAT’s criteria to determine the winner
of the contest is based on the equation [1]:

()
()ii

ii
bw

bx
−

−=iF (1)

 Where i is the number of the instance (1≤ i
≤20), x is the number of soft constraints violated
for the contestant; b is the number of soft
constraint violated for the best participant on this
instance, and w is the number of soft constraints
violated for the worst participant on this instance.
For the PATAT problem we have [1]:
• n Events: E = {e1, e2, ... , en}
• m Students: U = {u1, u2, ... , um}
• 45 Periods: P = {p1, p2, ... , p45}
• r Rooms: A = {a1, a2, ... , ar}
• r Room sizes: C = {c1, c2, ... , cr}
• t Features: F = {f1, f2, ... , ft}

We have three binary matrixes too [1]:
• Matrix student/event: Dnxm

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mnmm

n

n

nxm

ddd

ddd
ddd

D

...
............

...

...

21

22221

11211

Where dil = 1 if the student l attend the event i,
and 0 otherwise.
• Matrix room/feature: Stxr

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

rtrr

t

t

txr

sss

sss
sss

S

...
............

...

...

21

22221

11211

where sjf = 1 if the room j satisfy the feature f, and
0 otherwise.

• Matrix event/feature: Qtxn

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ntnn

t

t

txn

qqq

qqq
qqq

Q

...
............

...

...

21

22221

11211

where qif = 1 if the event i requires the feature f, and
0 otherwise.
Let be xijk = 1 if the event i, is assigned to the room
j in the period k, and 0 otherwise.
Therefore, the problem can be formulated as
follows:

FulfilledishcvEvery
tosubject

scvzMin ∑=

That means UTT consists on minimizing the
objective function z = Number of soft constraints
violated (scv), subject to the following hard
constraints (hcv):

Hard Constraints:
1. No student attends more than one event at

the same time
This constraint establish that in any period k, at most
one event i ∈ Qe can be programmed; Qe is the set
of events that include the event e and all events that
have conflicts with this event e. This constraint is
written as:

∑
∈

===≤
eQi

ijk nekrjx ,...,145,...,1,...,11
 (2)

Where i, j and k represent the number of event, room
and period respectively.
2. The room is big enough for all the attending

students and satisfies all the features
required by the event

This constraint can be divided in two:
• A) The room is big enough for all the attending

students, and
• B) The room satisfies all the features required

by the event.
The constraint A can be also stated as follows: For
every room j where the event i is programmed, the
capacity of the room j (cj) will be higher or equal to
the number of students that attend the event i. That
is equivalent to the next relation among the number
of participants bi of the event i :

nidb
m

l
lii ,...,1

1
== ∑

= (3)
Where the student l attends the event i, dli is 1 if the
student l attend the event i.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 18

The constraint A can be stated like:
45,...,1,...,1,...,1,,1 ===≤=∀ krjnicbx jiijk (4)

The constraint B can be stated as follows: For
each k period, the room j must satisfy all the
features required by every event i programmed in
this room. This constraint can be state like:

45,...,1,...,1,...1,1 ===≤∀⇒= krjnisqfx jfifijk

 (5)
Where qif represents the feature f associated to
the event i, and sjf represents the feature f
satisfied by the room j.
3. Only one event is in each room at any

timeslot.
This constraint means that in a period k, any room
j can hold at most one event. This constraint can
be stated like:

∑
=

==≤
r

j
ijk knix

1
45,...,1,...,11

 (6)
Besides, there is another very important hard
constraint implicit in the problem’s definition:

• All the events must be programmed
in some period.

That means that during all the 45 periods, every
event i must be programmed exactly once.
Therefore this constraint can be written as:

∑∑
==

==
r

j
ijk

k
nix

1

45

1
,...,11

 (7)

Soft constraints
The soft constraints are the following:
1. Any student should not have a class in the

last slot of the day
Let be a set V that contains the last periods of the
days: V = {k | k mod NUMPER = 0}. Where k =
1, 2, ... , 45 and NUMPER = Number of periods
for day (9, in this case). Besides, this constraint
can be realized in this way: “some event i should
not be programmed in any room j, in any period k
∈ V”. Therefore, this constraint can be written as:

0
1 1

=∈∀ ∑ ∑
= =

n

i

r

j
ijkxVk

 (8)

2. Any student should not have more than

two classes consecutively
That means that, any student l should not have 3
or more events programmed in a row. Let be Sl
the set of events of the student l so this constraint
is written as:

() () ()∑ ∑ ∑
−

+−= ∈ =
+++ =∈∀

2

1 1
321 0

v

NUMPERvk Si

r

j
kijkijkij

l

xxxVv

l = 1,2,…m (9)

3. Any student should not have a single class on

any day.
This constraint establishes that all the students
should have programmed zero or more that one
event per day; that means:

mlxVv
v

NUMPERvk Si

r

j
ijk

l

,...,11
2

1 1
=≠∈∀ ∑ ∑ ∑

−

+−= ∈ =

 (10)

3 Algorithm Description
Simulated Annealing (SA) is one of the
metaheuristics used with more success to solve the
timetabling problem. The algorithm allows some
"wrongs" movements in order to escape of local
optimum with the purpose of reach the global
optimum. SA has showed that it is a powerful tool to
solve many problems of combinatorial optimization.
 The most common cooling scheme of SA and
used in this paper is a geometric scheme:
T(k+1)=αT(k), where k is the temperature number
and 0<α<1. The algorithm's parameters are: the
initial temperature T0, the final temperature TF , the
parameter alpha α and the length of Markov chain L.
Also, in SA a feasible initial solution S0 is required;
to find this initial solution for the PATAT's
benchmark, two different methods can be used. The
first method uses a heuristic that provides a feasible
solution to SA and it begins to improve it. The
heuristic that finds this initial solution uses the
concept of "more constrained event" [8]. The second
method uses SA to find the initial feasible solution.
In spite of the previous negative results of SA to
find feasible solutions in large instances [5], now it
is possible to use it in an efficient way and find an
initial solution. This is done by restricting the
movements and exchanges of events, in such a way
that, they do not introduce any new hard restriction
to the solution. The procedure is the following: all
the events are initialized to the first hour in the first
room. Then, a random event is chosen. Its feasible
neighborhood is calculated and a random feasible
neighbor is chosen. In most of the cases, the
procedure reaches a feasible solution and when it is
achieved, the procedure continues improving its
objective function until the system is frozen. The
next implementations of SA were developed:

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 19

3.1 First Neighborhood
For the SA implementation a first neighborhood
(SA01), was established with the next
parameters: The Markov chain length was set to
10000 [8]. A geometric cooling scheme was used
(Tn = αTn-1). The experimentation was done with
different alpha values: 0.70, 0.75, 0.85, 0.90 and
0.95. The initial temperature was obtained by
470m + n, where m is the number of students and
n is the number of events. This SA
implementation starts from a feasible solution
obtained for other heuristic [8]. This first
neighborhood used to generate new solutions is
as follows. First, two random periods are selected
and after that, two random classrooms are chosen.
If an interchange of events is feasible, this
interchange is accepted. Otherwise, two news
random periods and two new random rooms are
selected, and this process goes on.

3.2 Second Neighborhood
This implementation, called SA second
neighborhood (SA02), is similar to SA01: First, a
random event is chosen, second if it is feasible
several interchanges are calculated (over the
period and/or over the room or even over other
event) taking care that any hard constraint is not
violated. Finally, a random change is chosen.

3.3 SA without feasible initial solution
SA without feasible initial solution was label
SA03. Initially, any feasible solution is given to
the algorithm, all the events are set in the timeslot
1 and the room is set to 1. Using this solution, the
algorithm starts working until it reaches a feasible
solution. The percentage of not feasible solutions
obtained with this approach is less to 2%. The
neighborhood using by this implementation is the
same as the Second Neighborhood.

4 Analytically tuned parameters of

Simulated Annealing
A scheme of tuned parameters published by
Sanvicente et. al. [10] was used. This scheme was
used successfully in other problems [11] [12].
The T0 parameter is obtained in function of the
maximum possible deterioration of the objective
function that can be accepted in a current solution
with this temperature, Tf parameter is obtained in
function of the minimum possible deterioration of
the objective function. The maximum possible

deterioration, with the proposed neighborhood is:
K*(maximum number of students per event). Where
is easy to note that in this case K is equals to eight
 T0 and Tf are calculated with the next formulas:

())(ln max

max
0

V
A

V

ZP
Z

T
∆

∆−
=

(11)

())(ln min

min

V
A

V
f ZP

Z
T

∆
∆−

=

(12)

 The Markov chains length L of the metropolis
loop (the inner one) are also tuned dynamically. In
[10], an analytical method to determine the
longitude Li for i iteration is presented. In this
method, Li is determined establishing the
relationship between the cooling function and the
Markov chain length. In the first Metropolis cycle
the L-parameter is 1 and it increases according to a
β-parameter, until, in the last cycle of Metropolis, it
reaches the Lmax,:

Lmax = βn L1 (13)
 Where

αln
lnln 1max LL

n
−

=

(14)

n
LL 1max lnln

exp
−

=β

(15)

 With this analytical method, Tf will be 0;
however the stochastic equilibrium is verified here
since 0.01. Lmax takes the same value for all
implementations (10000 iterations).
Implementations with these tuned parameters are
next described: The implementation of the analytical
tuned parameters of SA first neighborhood (SA01)
was labeled SA04. The implementation of the
analytical tuned parameters of SA second
neighborhood (SA02) was called SA05
 Usually, using the analytical tuned approach is
possible to obtain a SA algorithm which has a
similar quality of the experimental tuned version of
the same algorithm, but the former may save until
fifty percent of computational time [11], [12].
 Although an interesting saving of time was
obtained with the analytical tuned parameters of SA,
the quality of its solutions is lightly smaller to those
obtained without formulae (11) to (15). The
explanation is the following. The experimental
method has obtained a very big T0 value, which was
bigger than the T0 obtained with the analytical
method (formulas 11-15); in fact the latter was
relatively too small. The later result was obtained
because both the acceptance probability and the
exploratory capacity of the experimental
implementation were very high. To solve this
problem, some actions can be taken:

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 20

a) The initial temperature T0 is set equal to that
obtained with the experimental method, and its
Markov chain length is set equal to 1 (L1=1), as is
established by the analytical method.
b) After each cycle of Metropolis, the
temperature is decreased according to the
geometrical cooling scheme, and the Markov
chain length is increased by one, until is reach the
T0 obtained with the analytical method.
c) Starting from T0 analytical the length Markov
chain is increased according to theβ parameter,
until it reaches Lmax and then, it stays constant
until arriving to Tf.
This implementation is called, SATUNED and
the pseudocode is the following one:

Pseudocode of the implementation SATUNED

Begin
x = initial_solution;
BestCost = costIni = f(x)
T=470*num_students+num_events;
T_analytical = DZmax / log
(Pacceptation)
β = exp((log(Lmax)-log(L1))/n);
END_TEMP = 0.01; L=L1; Iter=0;
While (T > END_TEMP)
 While (Iter < L)
 x_new = perturb(x);
 costNew = f(x_new);
 costDif = costNew – costIni;
 r = rand()
 if (costNew <= 0) then
 costIni = costNew;
 x = x_new;
 else
 r = rand()
 if (r < exp(-costDif/T)) then
 costIni = costNew;
 x= x_new;
 End_if
 if (BestCost > costoIni) then
 x* = xl; BestCost = costoIni;
 iter = iter + 1
 End_While
 T = T * ALPHA
 if(T<T_analytical) then L = L + 1
 else if(L<Lmax) then L = β * L
End_While
End

5 Results
In table 1, and figures 1 and 2 are presented the
results of quality of the different implementations
of SA proposed in this paper. Graphical results
for alpha 0.75and 0.95 used in the geometrical
cooling scheme are shown. In most of the cases,
the best results were obtained by a SA using the

second neighborhood and SA without feasible initial
solution or SATUNED (SA02, SA03 and SA06,
respectively). Table 5 shows the execution time of
the implementations with alpha 0.95; as can be
noticed, the faster is the implementation SA05, but,
its quality is not the best one. The best time was
obtained with the implementations SA02, SA03 and
SA06. For simplicity, only some alphas in this table
and figures are presented. The results are shown in
two categories: quality and time. The quality is
measured considering the number of soft constraints
violated. The time unit used is seconds. Every
instance was run ten times with every alpha and an
average is obtained:

Table 1 Quality results with alpha = 0.75
Alpha
0.75

SA01 SA02 SA03 SA05 SA06

s1 1 1.7 1.6 4.5 2.1
s2 10 1.9 3.5 4.3 3.5
s3 1 3.5 2.9 4.6 3.8
s4 1 4 2.6 4.2 5
s5 82 0.8 0.7 0.7 1.2

M1 126 115.5 105 112 103.9
M2 161 110.5 110.8 101.4 101.8
M3 149 153.5 145.3 147.1 141.4
M4 105 98.1 98.2 95.8 99
M5 72 79.9 72 83.8 70.9
h1 * * 492.8 ∗ *
h2 * * 432 * *

0

100

200

300

400

500

600

700

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 1 Quality results using alpha = 0.95, The axe y
is the number of soft constraints violate and the axe
x is the instance.

0

1000

2000

3000

4000

5000

6000

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

Ti
m

e
(s

)

SA01
SA02
SA03
SA04
SA05
SA06

∗ It was not possible to obtain enough feasible solutions to
make an average.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 21

Fig. 2 Time results using alpha = 0.95, the axe y
are the seconds ant the axe x the instance

6 Conclusions
In this paper, several implementations of SA for
UTT are presented. These implementations are
able to find feasible solutions for hard instances.
It represents an advance in relation with previous
results [5]. The best results were obtained with
SA02, SA03 and SA06; the fastest was SA06.
SATUNED implementation (SA06) saves around
32% of the execution time wasted by SA02 or
saves around 40% of the time used by SA03.
Besides SA06 has a similar quality that other
implementations. Therefore, SA with the
analytical tuned method in the paper had a good
performance and is relatively very simple to be
implemented.

References:
[1] International Timetabling Competition, URL:

http://www.idsia.ch/Files/ttcomp2002/
Consultant date: Wednesday , November 28 of
2007

[2] Cerny, V. Minimization of Continuous
Functions by Simulated Annealing. Research
Institute for Theoretical Physics, University of
Helsinki, preprint No. HU-TFT-84-51, 1984.

[3] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P.
Optimization by Simulated Annealing,
Science, Vol 220, Number 4598, pages671-
680, (1983).

[4] Kostuch, P.A. (2005). The University Course
Timetabling Problem with 3-Phase approach.
Practice and Theory of Automated
Timetabling V, Third International
Conference on Practice and Theory of
Automated Timetabling, Pittsburgh, PA, USA,
August 18-20, 2004. Lecture Notes in
Computer Science 3616 Springer 2005, ISBN
3-540-30705-2. pp 251-266

[5] Rossi-Doria, O., Sampels, M., Biratrari, M.,
Chiarandini, M., Dorigo, M., Gambardella, L.
M., Knowles, J., Manfrin, M., Mastrolilli, L.,
Paetcher, B., Paquete L., Stützle, T. A
comparison of the performance of different
metaheuristic on the timetabling problem.
Napier University, Université Libre de
Bruxelles, Technische Universitaet Darmstadt.
(2002).

[6] Luca Di Gaspero and Andrea Schaerf.
Timetabling Competition TTComp 2002: Solver
Description, Conference on Practice and Theory
of Automated Timetabling, Pittsburgh, PA, USA,
August 31, 2004.

[7] Socha, K.; Knowles, J.; Sampels, M. “A MAX-
MIN Ant System for the University Timetabling
Problem”. In Proceedings of the 3rd
International Workshop on Ant Algorithms,
ANTS 2002, Lecture Notes in Computer
Science, Vol. 2463, Springer, (2002), pp. 1-13.

[8] Bykov, Y. The Description of the Algorithm for
International Timetabling Competition.
Timetabling Competition of PATAT, University
of Nottingham, School of Computer Science &
IT, Wollaton Road, August, 2004.

[9] Halvard Arntzen, Arne Lokketangen. A local
search heuristic for a university timetabling
problem, Timetabling Competition of PATAT
August, 2004.

[10] Sanvicente-Sanchez, Hector y Frausto, Juan.
(2004). Method to Establish the Cooling Scheme
in Simulated Annealing Like Algorithms.
International Conference, Assis, Italy.
ICCSA’2004. LNCS Vol. 3095. 755-763.

[11] Hector Sanvicente-Sanchez, Juan Frausto-Solís,
Froilan Imperial- Valenzuela, Solving SAT
Problems with TA Algorithms Using Constant
and Dynamic Markov Chains Length,
Algorithmic Applications in Management,
Springer Verlag LNCS, June (2005)

[12] Héctor Sanvicente-Sánchez, Metodología de
Paralelización del Ciclo de Temperaturas en
Algoritmos Tipo Recocido Simulado, PhD
Thesis in Computer Science, ITESM Campus
Cuernavaca, Octuber (2003).

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 22

