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Abstract: - University Timetabling problem (UTT) has a computational complexity that grows exponentially 
as the size of the problem augments, then random algorithms become indispensable to solve it; among these 
algorithms, Simulated Annealing (SA) is one of the most efficient algorithms.  However, SA obtains the 
optimal solution or a very good approximation one, but only when SA parameters are well tuned. SA requires 
an initial solution for solving UTT. Besides, analytical tuning strategies for SA in UTT have not been 
explored. In this paper a SA Markov tuning strategy and a heuristic to generate a feasible solution are 
proposed. This strategy improves the performance of SA algorithms for ETT as is shown with experimental 
instances taken from PATAT benchmark.  
. 
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1 Introduction 
This paper proposes a solution to an Educational 
TimeTabling problem proposed in PATAT [1], 
and named University Timetabling (UTT) which 
has a computational complexity that grows 
exponentially as the size of the problem is 
increased. UTT has been solved with many 
heuristics as Simulated Annealing (SA) [2] 
[3],[4] Tabu Search [5][6], Ant Systems [7], and 
so on. A common approach to solve UTT is 
finding an initial feasible solution with some 
heuristics specially developed for that purpose; 
then a random algorithm derived from well 
known metaheuristics [6], [8], [9] is commonly 
used to improve this solution. SA not always 
obtains good results for UTT [5], because SA 
should have a good neighborhood and be well 
tuned. In this paper we propose to solve UTT 
using two particular neighborhoods, and a 
Markov tuning strategy. This strategy allows a 
best performance of SA algorithms for UTT as is 
shown with experimental instances taken from 
PATAT benchmark [1]. 
     The paper is organized as follows. Section 2 
includes the PATAT problem description and the 
mathematical model. Section 3 presents the 
implementations of SA tuned experimentally. 

Section 4 describes the analytical tuned parameters 
and its improvements. Finally, Section 5 and Section 
6 include the results and the conclusions 
respectively.  
 
 
2 Problem Description 
For Timetabling problems, as for any other NP 
problem, it is not efficient to apply exhaustive 
and/or deterministic methods due to their 
exponential complexity [8]; also, it is useful to 
create automatic methods to generate the best 
feasible solution. To assure the validity of the results 
obtained with the algorithms tested here, instances 
taken from PATAT’s benchmark (Practice and 
Theory of Automated Timetabling) are used [1]. 
The selected problem consists of: i) a set E of events 
to be scheduled in 45 periods of time (5 days of 9 
intervals every one), ii) a set of classrooms (R) that 
hold the events, iii) a set of students (U) that attend 
the events, and iv) a set of features (F), that should 
be satisfied by the rooms because the requirements 
of the events. Every student will attend some events 
and every room has a capacity. 
     A feasible timetable is one in which all the 
events have been assigned in a specific timeslot, in a 
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specific classroom, and all of the following hard 
constraints must be completely fulfilled: 
• No student attends more than one event at the 

same time. 
• The classroom chosen for an event is big 

enough to house all the attending students 
and it satisfies all the technical features 
required by the event.  

• Only one event is hold in each classroom at 
any specific timeslot. 

In addition, is desirable that the next soft 
constraints be satisfied: 
• A student should not have a class in the last 

slot of the day 
• A student should not have more than two 

classes consecutively  
• A student should not have a single class on a 

day.  
     The PATAT’s criteria to determine the winner 
of the contest is based on the equation [1]:  
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     Where i is the number of the instance (1≤ i 
≤20), x is the number of soft constraints violated 
for the contestant; b is the number of soft 
constraint violated for the best participant on this 
instance, and w is the number of soft constraints 
violated for the worst participant on this instance.  
For the PATAT problem we have [1]: 
• n Events: E = {e1, e2, ... , en} 
• m Students: U = {u1, u2, ... , um} 
• 45 Periods: P = {p1, p2, ... , p45} 
• r Rooms: A = {a1, a2, ... , ar} 
• r Room sizes: C = {c1, c2, ... , cr} 
• t Features: F = {f1, f2, ... , ft} 
 
We have three binary matrixes too [1]: 
• Matrix student/event: Dnxm 
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Where dil = 1 if the student l attend the event i, 
and 0 otherwise.  
• Matrix room/feature: Stxr 
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where sjf = 1 if the room j satisfy the feature f, and 
0 otherwise.  

• Matrix event/feature: Qtxn 
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where qif = 1 if the event i requires the feature f, and 
0 otherwise.  
Let be xijk  = 1 if  the event i, is assigned to the room 
j in the period k, and 0 otherwise. 
Therefore, the problem can be formulated as 
follows: 

FulfilledishcvEvery
tosubject

scvzMin ∑=
 

That means UTT consists on minimizing the 
objective function z = Number of soft constraints 
violated (scv), subject to the following hard 
constraints (hcv): 
 
Hard Constraints: 
1. No student attends more than one event at 

the same time 
This constraint establish that in any period k, at most 
one event i ∈ Qe can be programmed; Qe is the set 
of events that include the event e and all events that 
have conflicts with this event e. This constraint is 
written as: 

∑
∈

===≤
eQi

ijk nekrjx ,...,145,...,1,...,11
 (2) 

Where i, j and k represent the number of event, room 
and period respectively. 
2. The room is big enough for all the attending 

students and satisfies all the features 
required by the event  

This constraint can be divided in two:  
• A) The room is big enough for all the attending 

students, and 
• B) The room satisfies all the features required 

by the event.  
The constraint A can be also stated as follows: For 
every room j where the event i is programmed, the 
capacity of the room j (cj) will be higher or equal to 
the number of students that attend the event i. That 
is equivalent to the next relation among the number 
of participants bi of the event i : 

nidb
m

l
lii ,...,1

1
== ∑

=     (3) 
Where the student l attends the event i, dli is 1 if the 
student l attend the event i. 
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The constraint A can be stated like: 
45,...,1,...,1,...,1,,1 ===≤=∀ krjnicbx jiijk (4) 

The constraint B can be stated as follows: For 
each k period, the room j must satisfy all the 
features required by every event i programmed in 
this room. This constraint can be state like: 

45,...,1,...,1,...1,1 ===≤∀⇒= krjnisqfx jfifijk

                (5) 
Where qif  represents the feature f associated to 
the event i, and sjf   represents the feature f 
satisfied by the room j. 
3. Only one event is in each room at any 

timeslot. 
This constraint means that in a period k, any room 
j can hold at most one event. This constraint can 
be stated like:  
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             (6) 
Besides, there is another very important hard 
constraint implicit in the problem’s definition: 

• All the events must be programmed 
in some period. 

That means that during all the 45 periods, every 
event i must be programmed exactly once. 
Therefore this constraint can be written as:   
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Soft constraints 
The soft constraints are the following: 
1. Any student should not have a class in the 

last slot of the day 
Let be a set V that contains the last periods of the 
days: V = {k | k mod NUMPER = 0}. Where k = 
1, 2, ... , 45 and NUMPER = Number of periods 
for day (9, in this case). Besides, this constraint 
can be realized in this way: “some event i should 
not be programmed in any room j, in any period k 
∈ V”. Therefore, this constraint can be written as: 

0
1 1

=∈∀ ∑ ∑
= =

n

i

r

j
ijkxVk

              (8) 
 
2. Any student should not have more than 

two classes consecutively 
That means that, any student l should not have 3 
or more events programmed in a row. Let be Sl 
the set of events of the student l so this constraint 
is written as: 
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3. Any student should not have a single class on 

any day.  
This constraint establishes that all the students 
should have programmed zero or more that one 
event per day; that means: 
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3 Algorithm Description 
Simulated Annealing (SA) is one of the 
metaheuristics used with more success to solve the 
timetabling problem. The algorithm allows some 
"wrongs" movements in order to escape of local 
optimum with the purpose of reach the global 
optimum. SA has showed that it is a powerful tool to 
solve many problems of combinatorial optimization. 
     The most common cooling scheme of SA and 
used in this paper is a geometric scheme: 
T(k+1)=αT(k), where k is the temperature number 
and 0<α<1. The algorithm's parameters are: the 
initial temperature T0, the final temperature TF , the 
parameter alpha α and the length of Markov chain L. 
Also, in SA a feasible initial solution S0 is required; 
to find this initial solution for the PATAT's 
benchmark, two different methods can be used. The 
first method uses a heuristic that provides a feasible 
solution to SA and it begins to improve it. The 
heuristic that finds this initial solution uses the 
concept of "more constrained event" [8]. The second 
method uses SA to find the initial feasible solution. 
In spite of the previous negative results of SA to 
find feasible solutions in large instances [5], now it 
is possible to use it in an efficient way and find an 
initial solution. This is done by restricting the 
movements and exchanges of events, in such a way 
that, they do not introduce any new hard restriction 
to the solution. The procedure is the following: all 
the events are initialized to the first hour in the first 
room. Then, a random event is chosen. Its feasible 
neighborhood is calculated and a random feasible 
neighbor is chosen. In most of the cases, the 
procedure reaches a feasible solution and when it is 
achieved, the procedure continues improving its 
objective function until the system is frozen. The 
next implementations of SA were developed: 
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3.1 First Neighborhood  
For the SA implementation a first neighborhood 
(SA01), was established with the next 
parameters:  The Markov chain length was set to 
10000 [8]. A geometric cooling scheme was used 
(Tn = αTn-1). The experimentation was done with 
different alpha values: 0.70, 0.75, 0.85, 0.90 and 
0.95. The initial temperature was obtained by 
470m + n, where m is the number of students and 
n is the number of events. This SA 
implementation starts from a feasible solution 
obtained for other heuristic [8]. This first 
neighborhood used to generate new solutions is 
as follows. First, two random periods are selected 
and after that, two random classrooms are chosen. 
If an interchange of events is feasible, this 
interchange is accepted. Otherwise, two news 
random periods and two new random rooms are 
selected, and this process goes on. 
 
3.2 Second Neighborhood  
This implementation, called SA second 
neighborhood (SA02), is similar to SA01: First, a 
random event is chosen, second if it is feasible 
several interchanges are calculated (over the 
period and/or over the room or even over other 
event) taking care that any hard constraint is not 
violated. Finally, a random change is chosen. 
 
3.3 SA without feasible initial solution 
SA without feasible initial solution was label 
SA03. Initially, any feasible solution is given to 
the algorithm, all the events are set in the timeslot 
1 and the room is set to 1. Using this solution, the 
algorithm starts working until it reaches a feasible 
solution. The percentage of not feasible solutions 
obtained with this approach is less to 2%. The 
neighborhood using by this implementation is the 
same as the Second Neighborhood.  
 
 
4 Analytically tuned parameters of 

Simulated Annealing  
A scheme of tuned parameters published by 
Sanvicente et. al. [10] was used. This scheme was 
used successfully in other problems [11] [12]. 
The T0 parameter is obtained in function of the 
maximum possible deterioration of the objective 
function that can be accepted in a current solution 
with this temperature, Tf parameter is obtained in 
function of the minimum possible deterioration of 
the objective function. The maximum possible 

deterioration, with the proposed neighborhood is: 
K*(maximum number of students per event). Where 
is easy to note that in this case K is equals to eight  
     T0 and Tf are calculated with the next formulas: 
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     The Markov chains length L of the metropolis 
loop (the inner one) are also tuned dynamically. In 
[10], an analytical method to determine the 
longitude Li for i iteration is presented. In this 
method, Li is determined establishing the 
relationship between the cooling function and the 
Markov chain length. In the first Metropolis cycle 
the L-parameter is 1 and it increases according to a 
β-parameter, until, in the last cycle of Metropolis, it 
reaches the Lmax,: 

Lmax = βn L1 (13) 
     Where  

αln
lnln 1max LL

n
−

=
 

(14) 

n
LL 1max lnln

exp
−

=β
 

(15) 

     With this analytical method, Tf will be 0; 
however the stochastic equilibrium is verified here 
since 0.01. Lmax takes the same value for all 
implementations (10000 iterations). 
Implementations with these tuned parameters are 
next described: The implementation of the analytical 
tuned parameters of SA first neighborhood (SA01) 
was labeled SA04. The implementation of the 
analytical tuned parameters of SA second 
neighborhood (SA02) was called SA05 
     Usually, using the analytical tuned approach is 
possible to obtain a SA algorithm which has a 
similar quality of the experimental tuned version of 
the same algorithm, but the former may save until 
fifty percent of computational time [11], [12].  
     Although an interesting saving of time was 
obtained with the analytical tuned parameters of SA, 
the quality of its solutions is lightly smaller to those 
obtained without formulae (11) to (15). The 
explanation is the following. The experimental 
method has obtained a very big T0 value, which was 
bigger than the T0 obtained with the analytical 
method (formulas 11-15); in fact the latter was 
relatively too small. The later result was obtained 
because both the acceptance probability and the 
exploratory capacity of the experimental 
implementation were very high. To solve this 
problem, some actions can be taken:  
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a) The initial temperature T0  is set equal to that 
obtained with the experimental method, and its 
Markov chain length is set equal to 1 (L1=1), as is 
established by the analytical method.  
b) After each cycle of Metropolis, the 
temperature is decreased according to the 
geometrical cooling scheme, and the Markov 
chain length is increased by one, until is reach the 
T0 obtained with the analytical method.  
c) Starting from T0 analytical the length Markov 
chain is increased according to theβ parameter, 
until it reaches Lmax and then, it stays constant 
until arriving to Tf.  
This implementation is called, SATUNED and 
the pseudocode is the following one: 

Pseudocode of the implementation SATUNED 

Begin 
x = initial_solution;  
BestCost = costIni = f(x) 
T=470*num_students+num_events; 
T_analytical = DZmax / log 
(Pacceptation) 
β = exp((log(Lmax)-log(L1))/n);  
END_TEMP = 0.01; L=L1; Iter=0; 
While (T > END_TEMP) 
   While (Iter < L)  
      x_new = perturb(x);  
      costNew = f(x_new); 
      costDif = costNew – costIni;  
      r = rand() 
      if (costNew <= 0) then 
         costIni = costNew;  
         x = x_new; 
      else  
         r = rand() 
         if (r < exp(-costDif/T)) then 
            costIni = costNew; 
            x= x_new; 
         End_if 
      if (BestCost > costoIni) then 
         x* = xl; BestCost = costoIni; 
      iter = iter + 1 
   End_While 
   T = T * ALPHA 
   if(T<T_analytical) then L = L + 1 
   else if(L<Lmax) then L = β * L  
End_While 
End 
 
 
5 Results  
In table 1, and figures 1 and 2 are presented the 
results of quality of the different implementations 
of SA proposed in this paper. Graphical results 
for alpha 0.75and 0.95 used in the geometrical 
cooling scheme are shown. In most of the cases, 
the best results were obtained by a SA using the 

second neighborhood and SA without feasible initial 
solution or SATUNED (SA02, SA03 and SA06, 
respectively). Table 5 shows the execution time of 
the implementations with alpha 0.95; as can be 
noticed, the faster is the implementation SA05, but, 
its quality is not the best one. The best time was 
obtained with the implementations SA02, SA03 and 
SA06. For simplicity, only some alphas in this table 
and figures are presented. The results are shown in 
two categories: quality and time. The quality is 
measured considering the number of soft constraints 
violated. The time unit used is seconds. Every 
instance was run ten times with every alpha and an 
average is obtained: 
 

Table 1 Quality results with alpha = 0.75 
Alpha 
0.75 

SA01 SA02 SA03 SA05 SA06 

s1 1 1.7 1.6 4.5 2.1 
s2 10 1.9 3.5 4.3 3.5 
s3 1 3.5 2.9 4.6 3.8 
s4 1 4 2.6 4.2 5 
s5 82 0.8 0.7 0.7 1.2 

M1 126 115.5 105 112 103.9 
M2 161 110.5 110.8 101.4 101.8 
M3 149 153.5 145.3 147.1 141.4 
M4 105 98.1 98.2 95.8 99 
M5 72 79.9 72 83.8 70.9 
h1 * * 492.8 ∗ * 
h2 * * 432 * * 
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Fig. 1 Quality results using alpha = 0.95, The axe y 
is the number of soft constraints violate and the axe 
x is the instance. 

0

1000

2000

3000

4000

5000

6000

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

Ti
m

e 
(s

)

SA01
SA02
SA03
SA04
SA05
SA06

 
                                                 
∗ It was not possible to obtain enough feasible solutions to 
make an average. 
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Fig. 2 Time results using alpha = 0.95, the axe y 
are the seconds ant the axe x the instance 
 
 
6 Conclusions 
In this paper, several implementations of SA for 
UTT are presented. These implementations are 
able to find feasible solutions for hard instances. 
It represents an advance in relation with previous 
results [5]. The best results were obtained with 
SA02, SA03 and SA06; the fastest was SA06. 
SATUNED implementation (SA06) saves around 
32% of the execution time wasted by SA02 or 
saves around 40% of the time used by SA03. 
Besides SA06 has a similar quality that other 
implementations. Therefore, SA with the 
analytical tuned method in the paper had a good 
performance and is relatively very simple to be 
implemented.  
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