
MASDScheGATS: A Prototype System for Dynamic Scheduling

Ana Madureira, Joaquim Santos, Ivo Pereira
Computer Science Department

Institute of Engineering - Polytechnic of Porto
GECAD – Knowledge Engineering and Decision Support Research Group

Porto, Portugal

Abstract

A manufacturing system has a natural dynamic nature observed through several kinds of random occurrences and
perturbations on working conditions and requirements over time. For this kind of environment it is important the
ability to efficient and effectively adapt, on a continuous basis, existing schedules according to the referred
disturbances, keeping performance levels. The application of Meta-Heuristics and Multi-Agent Systems to the
resolution of this class of real world scheduling problems seems really promising.
This paper presents a prototype for MASDScheGATS (Multi-Agent System for Distributed Manufacturing
Scheduling with Genetic Algorithms and Tabu Search).

1. Introduction

In the last decade several trends were observed in
manufacturing and society in general, namely: market
globalization; increasing product/services
customization, technology complexity, quality
requisites and number of competitors. Stability,
certainty and predictability gave place to change,
uncertainty and unpredictability.

Traditionally scheduling resolution requires the
intervention of highly skilled human problem-solvers.
This is a very hard and challenging domain because
current systems are becoming more and more complex,
distributed, interconnected and subject to rapidly
changing and even more disturbances. For these
dynamic optimization problems environments, that are
often impossible to avoid in practice, the objective of
the optimization algorithm is no longer to simply locate
the global optimal solution, but to continuously track
the optimum, or to find a robust solution that operates
optimally in the presence of perturbations [1][8].

Hybridization is a promising research field of
computational intelligence focusing on combinations of
multiple approaches to develop the next generation of
intelligent systems. Recently, hybrid intelligent systems
are getting popular due to their capabilities in handling
several real world complexities involving imprecision,
uncertainty and vagueness.

Multi-agent paradigm is emerging for the
development of solutions to very hard distributed
computational problems. This paradigm is based either
on the activity of "intelligent" agents which perform

complex functionalities or on the exploitation of a large
number of simple agents that can produce an overall
intelligent behavior leading to the solution of alleged
almost intractable problems. The multi-agent paradigm
is often inspired by biological systems.

Considering the complexity inherent to the
manufacturing systems, dynamic scheduling is
considered an excellent candidate for the application of
agent-based technology. In many implementations of
Multi-Agent System (MAS) for manufacturing
scheduling, the agents model the resources of the
system and the scheduling of tasks is done in a
distributed way by means of cooperation and
coordination amongst agents [6][10]. There are also
approaches that use a single agent for scheduling that
defines the schedules that the resource agents will
execute [1], [2]. When responding to disturbances, the
distributed nature of multi-agent systems can also be a
benefit to the rescheduling algorithm by involving only
the agents directly affected, without disturbing the rest
of the community that can continue with their work.

Meta-Heuristics form a class of powerful and
practical solution techniques for tackling complex,
large-scale combinatorial problems producing
efficiently high-quality solutions. From the literature
we can conclude that they are adequate for static
problems. However, real scheduling problems are quite
dynamic, considering the arrival of new orders, orders
being cancelled, machine delays or faults, etc.
Scheduling problem in dynamic environments have
been investigated by a number of authors especially in
the evolutionary community, see for example [4][9].

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 353

In this paper we will model a Manufacturing
System by means of Multi-Agent Systems and Meta-
Heuristics technologies, where each agent may
represent a processing entity (machine). The objective
of the system is to deal with the complex problem of
Dynamic Scheduling in Manufacturing Systems. Our
approach shows that a good global solution for a
scheduling problem may emerge from a community of
machine agents solving locally their schedules while
cooperating with other machine agents that share some
relations between the operations/jobs. Meta-Heuristics
(Tabu Search or Genetic Algorithms) can be adapted to
deal with dynamic problems, reusing and changing
solutions/populations in accordance with the dynamism
of the Manufacturing System.

Coordination Mechanisms are used to guarantee the
feasibility of schedules. Notice that joining problems
that were locally solved will not guarantee the
feasibility of schedules (e.g. precedence relations could
not be guaranteed). The cooperation mechanism will be
established between machine agents involved in the
execution of operations (jobs) with precedence
relations in order to deal with the feasibility of the
generated schedules in run-time.

Considering that the inherent nature of current
manufacturing systems is distributed we will address
the complex dynamic scheduling problems in a
distributed way using the Multi-Agent paradigm. The
proposed architecture is based on Team-Work
characteristics due to its philosophy of cooperation.

Team-oriented programming suggests a number of
different approaches to the definition of agent teams
and their coordination in order to achieve common
goals. Some MAS organizational aspects [3] are
evaluated in order to define the proposed cooperation
mechanism.

The remaining sections are organized as follows: in
section 2 the scheduling problem under consideration is
presented. Section 3 presents and describes
MASDScheGATS Systems and describes implemented
mechanisms. Finally, the paper presents some
conclusions and puts forward some ideas for future
work.

2. Problem Definition

Real world scheduling problems have received a lot

of attention in recent years. In this work we consider
the resolution of realistic problems. Most real-world
multi-operation scheduling problems can be described
as dynamic and extended versions of the classic Job-
Shop scheduling combinatorial optimization problem.

In practice, many scheduling problems include
further restrictions and relaxation of others [5]. Thus,
for example, precedence constraints among operations
of the different jobs are common because, often,
mainly in discrete manufacturing, products are made of
several components that can be seen as different jobs
whose manufacture must be coordinated. Additionally,
since a job can be the result of manufacturing and
assembly of parts at several stages, different parts of
the same job may be processed simultaneously on
different machines (concurrent or simultaneous
processing). Moreover, in practice, scheduling
environment tends to be dynamic, i.e. new jobs arrive
at unpredictable intervals, machines breakdown, jobs
can be cancelled and due dates and processing times
can change frequently.

Figure 1 - Graph Operations of a Complex Job

The problem, focused in our work, which we call

Extended Job-Shop Scheduling Problem (EJSSP)
[1],[2], has major extensions and differences in relation
to the classic Job-Shop Scheduling Problem (JSSP). In
this work, we define a job as a manufacturing order for
a final item, that could be Simple or Complex (Figure
1). It may be Simple, like a part, requiring a set of
operations to be processed. We define it as Simple
Product or Simple Final Item. Complex Final Items,
requiring processing of several operations on a number
of parts followed by assembly operations at several
stages, are also dealt with.

3. MASDScheGATS System

Distributed environment approaches are important
in order to improve scheduling systems flexibility and
capacity to react to unpredictable events. It is accepted
that new generations of manufacturing facilities, with
increasing specialization and integration, add more
problematic challenges to scheduling systems. For that
reason, issues like robustness, regeneration capacities

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 354

and efficiency are currently critical elements in the
design of manufacturing scheduling system and
encouraged the development of new architectures and
solutions, leveraging the MAS research results.

It starts focusing on the solution of the dynamic
deterministic EJSSP problems. For solving these we
developed a framework, leading to a dynamic
scheduling system (Figure 2) having as a fundamental
scheduling tool, a hybrid scheduling system, with two
main pieces of intelligence.

One such piece is a Hybrid Scheduling Module that
is a combination of Tabu Search and Genetic
Algorithm based method and a mechanism for inter-
machine activity coordination. The objective of this
mechanism is to coordinate the operation of machines,
taking into account the technological constraints of
jobs, i.e. job operations precedence relationships,
towards obtaining good schedules. The other piece is a
dynamic adaptation module that includes mechanisms
for neighbourhood/population regeneration under
dynamic environments, increasing or decreasing it
according new job arrivals or cancellations.

Figure 2 - MASDScheGATS Prototype System

3.1. Hybrid Scheduling Module

Initially, we start by decomposing the deterministic

EJSSP problem into a series of deterministic Single
Machine Scheduling Problems (SMSP). We assume the
existence of different and known job release times rj,
prior to which no processing of the job can be done
and, also, job due dates dj. Based on these, release
dates and due dates are determined for each SMSP and,
subsequently, each such problem is solved
independently by a TS or a GA(considering a self-
parameterization issue). Afterwards, the solutions
obtained for each SMSP are integrated to obtain a

solution to the main EJSSP problem instance.
The integration of the SMSP solutions may give an

unfeasible schedule to the EJSSP. This is why schedule
repairing may be necessary to obtain a feasible
solution.

3.2 Dynamic Adaptation Module

For non-deterministic problems some or all

parameters are uncertain, i.e. are not fixed as we
assumed in the deterministic problem. Non-
determinism of variables has to be taken into account in
real world problems. For generating acceptable
solutions in such circumstances our approach starts by
generating a predictive schedule, using the available
information and then, if perturbations occur in the
system during execution, the schedule may have to be
modified or revised accordingly, i.e. rescheduling is
performed. Therefore, in this process, an important
decision must be taken, namely that of deciding if and
when rescheduling should happen. The decision
strategies for rescheduling may be grouped into three
categories: continuous, periodic and hybrid
rescheduling. In the continuous one rescheduling is
done whenever an event modifying the state of the
system occurs. In periodic rescheduling, the current
schedule is modified at regular time intervals, taking
into account the schedule perturbations that have
occurred. Finally, for the hybrid rescheduling the
current schedule is modified at regular time intervals if
some perturbation occurs.

In the scheduling system for EJSSP, rescheduling is
necessary due to two classes of events:

• Partial events which imply variability in jobs or
operations attributes such as processing times,
due dates and release times.

• Total events which imply variability in
neighbourhood structure, resulting from either
new job arrivals or job cancellations.

While, on one hand, partial events only require
redefining job attributes and re-evaluation of the
objective function of solutions, total events, on the
other hand, require a change on solution structure and
size, carried out by inserting or deleting operations, and
also re-evaluation of the objective function. Therefore,
under a total event, the modification of the current
solution is imperative. In this work, this is carried out
by mechanisms described in [1] for SMSP.

Considering the processing times involved and the
high frequency of perturbations, rescheduling all jobs
from the beginning should be avoided. However, if

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 355

work has not yet started and time is available, then an
obvious and simple approach to rescheduling would be
to restart the scheduling from scratch with a new
modified solution on which takes into account the
perturbation, for example a new job arrival. When
there is not enough time to reschedule from scratch or
job processing has already started, a strategy must be
used which adapts the current schedule having in
consideration the kind of perturbation occurred.

The occurrence of a partial event requires
redefinition of job attributes and a re-evaluation of the
schedule objective function. A change in job due date
requires the re-calculation of the operation starting and
completion due times of all respective operations.
However, changes in the operation processing times
only requires re-calculation of the operation starting
and completion due times of the succeeding operations.
A new job arrival requires definition of the
correspondent operation starting and completion times
and a regenerating mechanism to integrate all
operations on the respective single machine problems.
In the presence of a job cancellation, the application of
a regenerating mechanism eliminates the job operations
from the SMSP where they appear. After the insertion
or deletion of positions, neighbourhood regeneration is
done by updating the size of the neighbourhood and
ensuring a structure identical to the existing one. Then
the scheduling module can apply the search process for
better solutions with the new modified solution.

3.3 Hybrid Architecture

The work described in this paper is a system where
a community of distributed, autonomous, cooperating
and asynchronously communicating machines tries to
solve scheduling problems.

The main purpose of MASDScheGATS (Multi-
Agent System for Distributed Manufacturing
Scheduling with Genetic Algorithms and Tabu Search)
is to create a Multi-Agent system where each agent
represents a resource (Machine Agents) in a
Manufacturing System.

Each Machine Agent must be able: to find an
optimal or near optimal local solution trough Genetic
Algorithms or Tabu Search meta-heuristics; to deal
with system dynamism (new jobs arriving, cancelled
jobs, changing jobs attributes, etc); to change/adapt the
parameters of the basic algorithm according to the
current situation; to switch from one Meta-Heuristic
algorithm to another and to cooperate with other
agents.

The original Scheduling problem defined in section
2, is decomposed into a series of Single Machine
Scheduling Problems (SMSP)[1]. The Machine Agents
(which has a Meta-Heuristic associated) obtain local
solutions and later cooperate in order to overcome
inter-agent constraints and achieve a global schedule.

The proposed Team-Work architecture is based on
three different types of agents. In order to allow a
seamless communication with the user, a User Interface
Agent is implemented. This agent, apart from being
responsible for the user interface, will generate the
necessary Task Agents dynamically according to the
number of tasks that comprise the scheduling problem
and assign each task to the respective Task Agent.

The Task Agent will process the necessary
information about the job. That is to say that this agent
will be responsible for the generation of the earliest and
latest processing times, the verification of feasible
schedules and identification of constraint conflicts on
each job and the decision on which Machine Agent is
responsible for solving a specific conflict.

Finally, the Machine Agent is responsible for the
scheduling of the operations that require processing in
the machine supervised by the agent. This agent will
implement meta-heuristic and local search procedures
in order to find best possible operation schedules and
will communicate those solutions to the Task Agent for
later feasibility check.

Figure 3 - MASDScheGATS System Architecture

The architecture was implemented using the Java

Agent Development framework (JADE). The main
challenge of the implementation was the message
propagation and the synchronization of the agents as
they advance to the next round. This situation occurs
because it is impossible to control the delay of
messages between the agents and the order of the
messages in the message queue. To ensure that agents
do not move towards the next round before handling
every operation schedule (and potential conflicts
between operations), each agent waits for a message
(with a flag indicating the round number) from all
agents of a different type (Task Agents and Machine
Agents types) with which it has some relation. As such,

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 356

each Task Agent will wait for a message of all Machine
Agents that handle operations belonging to the job
managed by the Task Agent and each Machine Agent
will wait for a message from each Task Agent, to which
the operations to be processed in the machine managed
by the Machine Agent belong.

Also, within agents of the same type was necessary
to implement some synchronization aspects. Task
Agents need to communicate to check whether they are
in cycle or not and Machine Agents need to
communicate to ensure that they do not attempt to
resolve conflicts when an agent with a lower priority
value has conflicts with operations that are processed in
Machine Agents with higher priority values.

It starts focusing on the solution of the dynamic
deterministic EJSSP problems. For solving these we
developed a framework, leading to a dynamic
scheduling system having as a fundamental scheduling
tool, a hybrid scheduling system, with two main pieces
of intelligence (Figure 1).

One such piece is a combination of TS and GA
based method and a mechanism for inter-machine
activity coordination. The objective of this mechanism
is to coordinate the operation of machines, taking into
account the technological constraints of jobs, i.e. job
operations precedence relationships, towards obtaining
good schedules. The other piece is a dynamic
adaptation module that includes mechanisms for
neighbourhood/population regeneration under dynamic
environments, increasing or decreasing it according
new job arrivals or cancellations.

3.4 Cooperation Mechanism

Once the Machine Agents find their respective best
local solution to the set of assigned operations, it is
likely that the assembly of such solutions in a final plan
will not establish a feasible schedule. The reason for
this situation derives from the fact that each Machine
Agent does not take into account, due to the concurrent
procedure of local searching, the plans of other agents
with which it has inter-agent constraints. It is therefore
necessary a subsequent coordination mechanism so that
a global feasible schedule is attained whilst minimizing
the adjustments to the initial local solutions [2].

The implemented mechanism gets its inspiration
from the Asynchronous Weak-Commitment Search
Algorithm [7]. The cornerstone of the mechanism is the
assignment of priority values to Machine Agents,
according to an altruistic stance, so that lower priority
agents will satisfy the constraints of higher priority
agents. A set of coordination messages are broadcasted

amongst the agents, within each coordination round, in
order to ensure a coherent communication of conflicts
and avoid unnecessary processing of solutions that will
be discarded in succeeding steps.

There are two events on which agents can increase
their priority values. The first one occurs when a
Machine Agent cannot find a satisfactory solution. In
this event, the system will increase that machine’s
priority value so that other Machine Agents will
attempt to change their schedules in order to find a
solution to the conflicting constraints. The second
event is the discovery of a solution that was not found
previously, i.e., if a Machine Agent changes its
schedule to a state that was not reached before, the
system increases the priority of this agent. The increase
of priority in such an event is necessary firstly as a way
to further explore the new state and secondly as a way
to provide the algorithm the necessary completeness.
Typically, the increase of the priority value in the case
of the second event is much greater then in the first
event.

Although the mechanism demonstrates to be a
remarkable approach in the resolution of distributed
constraint satisfaction problems, it is imperative to take
notice of potential loops that may arise when
operations in conflict have a narrow solution space,
hindering the possibility of a wider diversification of
the solutions. It so happens because Machine Agents
can only resolve conflicts by swapping operations or
filling empty time slots in the time window, assuring
the non violation of the earliest due dates and conflict
resolution. One way to avoid this situation is to
schedule the operations in conflict towards a later time.
While feasible, this option is not ideal as deteriorates
the quality of the global schedule. Another way is the
introduction of a disturbance onto the schedule when a
cycle is detected. This is done through the relaxation of
the conflict resolution constraint. If an agent cannot
solve the conflict, it may at least try to position the
operation at a time closer to the required time of
resolution. Even if the conflict is not solved, a different
schedule is generated and other agents can try to solve
the conflict with the new scheduling state.

Also essential to mention is the tabu-list
implemented in the mechanism. This tabu-list holds the
duple (op,round#) that is employed to ensure
persistence of the solutions found so far. In fact,
operations in the tabu-list cannot be moved in the
current round, and for subsequent n rounds, introducing
the parameter n, which values enclose a significant
influence in the mechanism’s performance.

Important to mention as well is the way
convergence to optimal solutions is achieved. Via our

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 357

particular design of the mechanism, every schedule
change is performed taking into consideration the
earliest due date. If the required time for solving the
conflict falls within a certain time interval, the
mechanism will attempt to schedule the operation at the
closest possible time of the earliest due date.

Finally, two mechanisms were implemented to
control the running time of the algorithm. Given the
fact that a complete algorithm is at hand, it is
imperative to control its running time, that, while
solving problems of a substantial dimension, may take
several minutes to reach a solution.

The first mechanism is the already mentioned cycle
detector. Basically, this mechanism is no more than the
Task Agents’ memory, which consists of all the
different allocations that the Machines have found for
the particular operations of the task managed by the
agent. The memory can be kept for the all duration of
the resolution or for some rounds only.

The second mechanism is the task locking
mechanism. The purpose of this mechanism is to
maintain stationary the plan of the operations of a task
as soon as there are no more conflicts within its
operations. Once the operations are fixed, the Machine
Agents will try to adapt the allocation of operations of
other tasks to the time slots still available. For instance,
if at a certain moment in the resolution two tasks are
locked, and if each task has an operation on every
machine, this means that two operations on each
Machine Agent are fixed and these Agents must now
find feasible plans for the other operations without
generating conflicts with the operations already locked.
The mechanism is adjustable by parameterization. It is
possible to keep the task locked until a global solution
is found. As an alternative, the task can be unlocked
after a certain number of rounds or if the time slots
allocated to its operations are in high demand in other
Machine Agents.

4. Conclusions and Future Work

This paper presents a prototype of an Hybrid
Scheduling System that assumes the combination of
different Meta-Heuristics and Multi-Agent Systems. To
solve the scheduling problem, Machine Agents and
Task Agents must interact and cooperate with other
agents in order to obtain optimal or near-optimal global
performances trough Meta-heuristics. The idea is that
from local, autonomous and often conflicting agent’s
objectives, a global solution emerges from a
community of machine agents solving locally their
schedules while cooperating with other machine agents.
Agents have to manage their internal behaviors and

their relationships with other agents via cooperative
negotiation in accordance with business policies
defined by the user manager.

We believe that a new contribution for the
resolution of more realistic scheduling problems
(Extended Job Shop Problems) was described in this
paper. The particularity of our approach is the
procedure to schedule operations, as each machine will
first find local optimal or near optimal solutions,
succeeded by the interaction with other machines
trough cooperation mechanism as a way to find an
optimal or near-optimal global schedule.

5. Acknowledgment

The authors would like to acknowledge FCT,
FEDER, POCTI, POCI for their support to R&D
Projects and the GECAD Unit.

6. References

[1] Ana M. Madureira, Meta-Heuristics Application to

Scheduling in Dynamic Environments of Discrete
Manufacturing. PhD Dissertation. University of Minho,
Braga, Portugal, 2003 (in portuguese).

[2] Ana Madureira, Nuno Gomes and Joaquim Santos,
Cooperative Negotiation Mechanism for Agent Based
Distributed Manufacturing Scheduling. WSEAS
Transactions on Systems, Issue 12, Volume 5,
ISSN:1109-2777, 2899-2904 2006.

[3] Brian Horling and Victor Lesser, A Survey of Multi-
Agent Organizational Paradigms, University of
Massachusets, 2005.

[4] H. Aytug, M.A. Lawley, K. McKay,S. Mohan and R.
Uzsoy, Executing production schedules in the face of
uncertainties: A review and some future directions,
European Journal of Operational Research,Volume 16
(1), 2005, pp. 86-110.

[5] M. C. Portmann, Scheduling Methodology:
optimization and compu-search approaches, in the
planning and scheduling of production sys-tems,
Chapman &Hall, 1997.

[6] M. Wooldridge, An Introduction to Multiagent Systems,
John Wiley and Sons, 2002

[7] M. Yokoo and K.Hirayama, Algorithms for Distributed
Constraint Satisfaction: A Review, Journal of
Autonomous Agents and Multi-Agent Systems, 2000.

[8] P. Cowling, & M. Johansson, Real time information for
effective dynamic scheduling. European J. of Operat.
Research,139 (2), 2002, 230-244.

[9] S. Jain and S. Meeran, Deterministic Job Shop
scheduling: past, present and future, European Journal
of Operational Research, nº113, 390-434, 1999.

[10] W. Shen, and D. Norrie, Agent-based systems for
intelligent manufacturing: a state of the art survey, Int. J.
Knowl. Inform. Syst., vol. 1, no. 2, 1999, pp. 129– 156.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 358

