
Web Services Composition for Business Process Automation

YUEFENG FANG, KUN GAO, XIAOYONG WANG, JIFANG LI
Computer Science and Information Technology College

Zhejiang Wanli University
No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang

P. R. CHINA

Abstract: Composition of web services has received much interest to support business-to-business or enterprise
application integration. Current standards to formalize the specification of web services, their flow composition
and execution are introduced in this paper. Web services composition includes static and dynamic composition.
We thoroughly introduced the static composition based on BPEL4WS through an example. Dynamic
composition needs the support for automatic discovery ability. We put forward a method that can incorporate the
semantic description into UDDI document based on UDDI’s TModels. Thus we can take advantage of the UDDI
popularity and support, while publishing semantically grounded descriptions of services that can be used to
perform capability based search for services.

Key-Words: web services composition, business process automation, UDDI

1 Introduction
With the popularity of the World Wide Web, it has
come the need for businesses to exploit the web not
only for disseminating information but also for
improving their interactions with their customers,
distributors, suppliers and partners. The web service
(WS) paradigm has emerged as an important
mechanism for interoperation amongst separately
developed distributed applications in the dynamic
e-business environment[1].
 Applications are to be assembled from a set of
appropriate Web services and no longer be written
manually. Seamless composition of Web services has
enormous potential in streamlining business to
business or enterprise application integration. In an
ideal world, all enterprise e-business systems and
applications would work together as a cohesive unit.
Suppliers, business partners, departments, existing
applications, and new e-business applications would
interoperate and share data seamlessly. This would
be a world of streamlined business processes and
automated procedures, a world in which Internet and
wireless technologies assure profitability and return
on investment. Regardless of their geography or
industry, all companies would be able to differentiate
themselves from the competition, rapidly meet
customer demands, and do business more efficiently
with the best business partners[2].
 Web Services can be combined to realize more
complex processes or composite services. They are
enabling to compose complex processes from
services that are offered and implemented by
different organizations. In this new model, the
business world has developed a number of
XML-based standards to formalize the specification

of web services, their flow composition and
execution. In section 2, the current standards for web
services and their composition are introduced; the
static composition of web services based on
BPEL4WS is introduced in section 3; the semantic
description can be incorporated into UDDI for
dynamic web services discovery, which is introduced
in section 4 and section 5 concludes this paper.

2 Current standards for Web Services

2.1 SOAP, WSDL and UDDI
There are three main components in the current web
services architecture. Web languages such as
Universal Description, Discovery, and Integration
(UDDI) [3], Web Services Description Language
(WSDL) [4] and Simple Object Access Protocol
(SOAP) [5] define standards for service discovery,
description and messaging protocols. The UDDI
registry allows a business to publicly list a
description of itself and the services it provides.
Currently, IBM and Microsoft host UDDI nodes, HP
and SAP are running beta nodes. Companies can
register themselves with UDDI together with their
web services. Other companies can then use UDDI to
search for specific companies or web services.

2.2 Web Services Conversation Language
Hewlett-Packard developed the Web Services
Conversation Language (WSCL), an
XML-based specification layered on top of
WSDL, for use in defining conversations
between service providers and consumers. The
Transition attribute defines the ordering between

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 295

interactions. The conversation proceeds from
one interaction to another according to the
legally defined transitions. Transition is unique
to WSCL, whereas Interaction and
Inbound/Outbound XML documents overlap
with WSDL.

2.3 ebXML
The United Nations (UN/CEFACT) and OASIS
sponsored the ebXML specifications for use in
e-business frameworks. ebXML Business Process
Specification Schema. ebXML BPSS is a proposed
standard for specifying collaborations for use in
exchanging business documents through a set of
choreographed transactions[6].

2.4 Web Services Flow Language
IBM’s Web Services Flow Language is an XML
based specification for describing a public
collaborative process and its compositions [7].
WSFL is layered on top of WSDL, which describes
the service interfaces and their protocol bindings. It
defines two types of web services compositions: a
flow model specifies the execution sequence of a
business process’s functions and a global model
combines flow models and provides a description of
how the composed web services interact with each
other.

2.5 XLANG
Microsoft’s XLANG [8], an XML-based
specification for describing executable business
processes internal to a business, is layered on top of
WSDL. The XLANG specification builds on the
XML code for process description that Microsoft’s
Visiobased BizTalk Server Orchestration graphical
modeling tool generates.

2.6 Business Process Modeling Language
The Business Process Management Initiative
developed the XML-based BPML metalanguage for
modeling executable private business processes.
BPML is complementary to public collaborative
process description languages, such as BPSS. It is
based on the concept of transactional finite-state
machines and has features that overlap XLANG.

2.7 Business Process Execution Language for
Web Services
The Business Process Execution Language for Web
Services is an XML-based language released by BEA,
IBM, and Microsoft in July 2002, and it replaces the
existing web service composition languages XLANG
by Microsoft and Web Service Flow Language by

IBM. It is used to describe executable business
processes, which rely on the import and export of
web services exclusively. The processes are specified
on an abstract level disregarding any binding
information of the service types to concrete service
implementations. The specification of a business
process within a BPEL4WS document mainly
consists of three sections: the partners for the
participants in the process interactions, the activities
with the corresponding control-flow, and the
containers for the required messages and their
data-flow.

3 Static Web Services composition
based on BPEL4WS
The fast and dynamic integration of business process
is an essential requirement for organization to adapt
their business practices to the dynamic nature of the
Web. Business partners may need to form permanent
(long term) or temporary (short term) relationships.
In the former type of relationship, components are
known in advance and alliances are statically defined.
The latter form of partnership does not assume an a
priori trading relationship among partners. An
e-service would in this case need to dynamically
discover partners to team up with to execute the
required transactions. Thus, this type of dynamic
integration (also called on-the-fly integration)
requires support for automated partner discover and
fast e-service integration.
 In this section, we will discuss the static web
services composition problems by describing a given
example using BPEL4WS. Let us imagine an
application scenario of booking travel packages in a
travel agency. Upon receiving the customer order, the
travel agent will create a trip request and derive the
required hotel and flight reservations for it. It must
cooperate with external specialized service providers
that offer hotel and flight reservations. The process
has to be integrated and all services must correctly
interact with each other.
 There are several interactions in this scenario. For
example, “Customer to Create Itinerary” is
abbreviated with CToCI, “Create Itinerary to Flight
Service" is abbreviated with CIToFS, RIToFS stands
for “Replan Itinerary to Flight Service”. CIToHS
stands for “Create Itinerary to Hotel Service”. The
following is a WSDL fragment for the travel agency
service.
<definitions targetNamespace="http://..."
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name = "OrderEvent"></message>
<message name = "TripRquest"></message>
<message name = "FlightRequest"></message>

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 296

<message name = "HotelRequest"></message>
<message name = "BookingFailure"></message>
<portType name ="pt1">
<operation name ="CToCI">
<input message ="TripRequest"/>
</operation>
</portType>
<portType name ="pt2">
<operation name ="CIToHS">
<output message ="HotelRequest"/>
</operation>
</portType>
<portType name ="pt3">
<operation name ="CIToFS">
<output message ="FlightRequest"/>
</operation>
</portType>
...
<portType name ="pt9">
<operation name ="RIToFS">
<output message ="BookingFailure/>
</operation>
</portType>
</definitions>
 The exact control and data flow that determines
when an operation can execute is described in the
following BPEL4WS language. It specifies the roles
of each of the partners and the logical flow of the
message exchanges.
<process name ="TripHandling">
<partners>
<partner name ="Customer"
myRole ="TripHandlingAgent"
serviceLinkType ="ExternalServiceLink"
partnerRole ="CustomerAgent"/>
<partner name ="FlightService"
myRole ="TripHandlingAgent"
serviceLinkType ="InternalServiceLink"
partnerRole ="FlightServiceAgent"/>
<partner name ="HotelService"
myRole ="tripHandlingAgent"
serviceLinkType ="InternalServiceLink"
partnerRole ="HotelServiceAgent"/>
</partners>
<containers> ... <containers>
...
</process>

 The most difficult is to specify the logic of the
message flow. BPEL4WS provides
programming-language like constructs (sequence,
switch, while, pick). The process starts when it
receives a trip request from the customer. After the
request has been received, hotel and flight request

messages can be sent in any order to the two partner
services.
<sequence>
<receive partner="Customer"
portType ="pt1"
operation ="CToCI"
container ="OrderEvent">
</receive>
<flow>
<invoke partner ="HotelService"
portType ="pt2"
operation ="CIToHS"
inputContainer ="HotelRequest">
</invoke>
<invoke partner ="FlightService"
portType ="pt3"
operation ="CIToFS"
inputContainer ="FlightRequest">
</invoke>
</flow>
 After the partner services have been invoked, the
process waits for the services to send the results of
their booking operations, which again can arrive in
any order.
<flow>
<receive partner ="HotelService"
portType ="pt4"
operation ="HSToEVAL1"
container ="HotelRequest">
</receive>
<receive partner ="FlightService"
portType ="pt5"
operation ="FSToEVAL1"
container ="FlightRequest">
</receive>
</flow>

4 Incorporating UDDI for Web
services automatic composition
Universal Description Discovery and Integration
(UDDI) is an industrial initiative whose goal is to
create an Internet wide registry of web services.
UDDI allows businesses to register their contact
points, and the web services that they provide. UDDI
supports the registration of attributes of services via a
construct called TModel. A TModel is a form of
metadata that provides a reference system for
information about services. It allows the specification
of additional attributes of the entities described in the
UDDI repository. For instance services can specify
that they are based on the WSDL specification by
referring to a publicly known WSDL TModel. In
general TModels have two functions: the first is to
tag the type of service advertised and whether some

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 297

specific conventions on the use of the UDDI registry
have been applied. The second is to provide abstract
keys to be associated with a service specific value.
For example, a service may specify its category using
the North American Industry Classification System
(NAICS) published by the US Census.
 UDDI allows a wide range of searches of the
registry: services can be searched by name, by
location, by business, by bindings or by TModels. It
enjoys the wide support of many prominent software
and hardware companied that invested heavily in web
services. It is becoming the de-facto standards
repository of web services. Nevertheless, UDDI has
some shortcoming especially in the search
mechanisms that prevent the exploitation of its full
capacities. It allows only a keyword-based search of
businesses, and does not support any inference based
on the taxonomies referred to by the TModels.
 DAML-S provides a way to solve this problem, by
allowing a semantic description and matching of
services within UDDI [11]. Therefore, if we could
translate the DAML-S representations into UDDI
representations we combine the best of two worlds:
we take advantage of the UDDI popularity and
support, while publishing semantically grounded
descriptions of services that can be used to perform
capability based search for services.
 Some provenance information like the name and
address of the service provider in DAML-S profiles
can be mapped directly to UDDI records. DAML-S
specific attributes such as inputs, outputs, and so on
are instead represented using the TModel mechanism
described above. Business Services records use these
TModels to index the values they store from the
DAML-S Profile they intend to represent. As an
example consider the case of a stock quote reporting
service that takes as input a ticker symbol and returns
as output the current quote. The representation of the
inputs and outputs of such a services is shown in the
following fragment.
CategoryBag
 KeyedReference
 KeyName=Input
 KeyValue=financialOntology: ticker
 TmodelKey=”UUID of the DAML-S Input
TModel”
 KeyedReference
 KeyName=Output
 KeyValue=financialOntology: Quote
 TmodelKey=”UUID of the DAML-S Output
TModel”
 One advantage of the mapping described here is
that it is completely embedded in UDDI.
Furthermore, all the search functionalities provided

by UDDI can be used to retrieve information about
services that are represented as DAML-S services.

5 Conclusions
Starting from the current standards for web services
and their composition, we discussed the static
composition based on BPEL4WS. The goal with web
Services is to allow an automated discovery and
composition of services. For that, means and
languages for machine-readable descriptions of
services are necessary. The composition of the flow
based on BPEL4WS is still manually obtained. The
dynamic composition of services requires the
location of services based on their capabilities and
the recognition of those services that can be matched
together to create a composition. We introduced a
method to incorporate semantic description into
UDDI document based on UDDI’ TModels. Thus we
take advantage of the UDDI popularity and support,
while publishing semantically grounded descriptions
of services that can be used to perform capability
based search for services.

6 Acknowledgment
This research was supported by Ningbo Natural
Science Foundation under Grant No. 2007A610045.

References:
[1] Gisolfi, D. Web Services Architect Part 1: An

Introduction to Dynamic e-Business, IBM, April
2001.

[2] Building A Fully Integrated, Extended Enterprise,
2001, BEA White Paper

[3] UDDI. The UDDI technical white paper, 2000,
http://www.uddi.org/.

[4] E. Christensen, F. Curbera, G. Meredith. Web
Services Description Language (WSDL) 1.1,
2001. http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.

[5] W3C. SOAP 1.2Working draft, 2001.
http://www.w3c.org/TR/2001/WD-soap12-part0-
20011217/.

[6] Arindam Banerji, Claudio Bartolini, etc., Web
Services Conversation Language (WSCL) 1.0,
2002, 3, Hewlett-Packard Company,
http://www.w3.org/TR/wscl10/

[7] Assaf ARKIN, Business Process Modeling
Language (BPML), 2001, 3, BPMI.org,
http://xml.coverpages.org/WD-BPML-20010308
.pdf

[8] DAML-S Coalition, DAML-S: Web Service
Description for the Semantic Web, ISWC01,
2002

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 298

