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Abstract: - Many importance sampling techniques for direct lighting concentrate on either sampling the light 

source or the BRDF, or the product distribution of both. First, we present a generalized factor method to 

simplify multiple function integral into triple function product issues. Then we introduce an optimal wavelet 

product representation to reduce computation by a strategy for hierarchically sampling a wavelet tree, which 

starts at the coarsest resolution and recursively moves down to finer resolutions. 
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1 Introduction  

Image based lighting is being used for rendering. 

Image based lighting offers a number of advantages 

over simple lighting techniques such as directional 

or point lights. The use of a good sampling strategy 

for illumination is critical when integrating 

image-based lighting, such as environment maps, 

into a rendering system. This is because direct 

illumination in the form of high dynamic range 

(HDR) environment maps can have high frequency 

detail. The problem of efficient sampling of the 

illumination is compounded when the scene 

contains materials with high frequency BRDFs. 

High fidelity images based on a whole range of 

reflection phenomena described by the rendering 

equation [J. T. Kajiya 1986][1] often take hours or 

days to compute.  

𝐿𝜊 𝒙, 𝜔   𝜊 = 𝐿𝑒 𝒙, 𝜔   𝜊   +  𝑓𝑟  𝒙, 𝜔   𝑖 , 𝜔   𝜊 𝐿𝑖 𝒙, 𝜔   𝑖 𝑐𝑜𝑠 𝜃𝑖 𝑑𝜔   𝑖
𝛺

.     (1) 

The performance can be improved if we 

incorporate knowledge about the function being 

integrated into the sampling process. The idea is to 

concentrate samples to parts of the function where it 

is likely to be large. This technique is called 

importance sampling, and can vastly reduce the 

variance in Monte Carlo techniques[2]. 

Several researchers have recently worked on this 

problem, by either combining samples drawn 

independently according to the importance of the 

illumination and the BRDF [3] [4], or more recently, 

by drawing samples from the product distribution of 

the illumination and the BRDF [5]. These 

approaches produce high quality images with a 

small number of samples in unoccluded regions.  

Recently, Clarberg et al. [6] presented an 

algorithm called Wavelet Importance Sampling 

(WaIS) that samples products of wavelet functions. 

Their algorithm uses a property of wavelets that 

allows a wavelet product to be evaluated in a 

top-down fashion. However, WaIS addressed only 

aspects of direct illumination and static ones. 

In this paper, we represented an improvement of 

WaIS for real-time rendering with dynamic objects 

under global illumination. 

 

 

2 General integral of function product 

2.1 Multi-function product integral 

Given n distinct objects in a dynamic scene, the 

exitant radiance B at a surface point x along view 

direction θ due to distant environment lighting L is 
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the product integral over all incident directions 

sampled at a surrounding cubemap 𝛺 [Sun, W. et 

al. ][7]: 

𝐵 𝒙, 𝜔   𝜊  

=  𝐿 𝜔   𝑖 𝑂1 𝑥, 𝜔   𝑖  𝑂𝑗  𝑥, 𝜔   𝑖 

𝑛

𝑗 =1

𝑓𝑟  𝒙, 𝜔   𝑖  𝜔   𝜊 (𝑁   ∙ 𝜔   𝑖)𝑑𝜔   𝑖
𝛺

 

=  𝐿 𝜔   𝑖 𝑂 1 𝑥, 𝜔   𝑖  𝑂 𝑗  𝑥, 𝜔   𝑖 

𝑛

𝑗 =1

𝑓𝑟  𝒙, 𝜔   𝑖  𝜔   𝜊 𝑑𝜔   𝑖
𝛺

.            (2)  

where 𝜔   𝑖  is the incident direction, 𝑁    is the 

normal at x, fr is the BRDF, O1 is the local visibility 

at x due to self-occlusion. Oi(2≤i≤n) is the dynamic 

occlusion at x occluded by the i
th

 

neighboring object 

in the scene. In order to eliminate the dependance of 

the BRDF on the normal, the cosine term (𝑁   ∙ 𝜔   𝑖) 

is combined with the self visibility 𝑂1 as 𝑂 1 as: 

𝑂 1 𝒙, 𝜔   𝑖 = 𝑂1 𝒙, 𝜔   𝑖  𝑁   ∙ 𝜔   𝑖                                                                 3  

  For a fixed vertex x and view direction 𝜔   𝑜 , 

equation (2)  can be simplified as: 

𝐵 =  𝐿 𝜔   𝑖 𝑂 1 𝜔   𝑖  𝑂 𝑗  𝜔   𝑖 

𝑛

𝑗 =1

𝑓𝑟 𝒙, 𝜔   𝑖 𝑑𝜔   𝑖                                    (4) 

It is exactly the product integral of (n+2) functions: 

𝐵 =   𝐹𝑗  𝜔   𝑖 

𝑛+2

𝑗 =1

𝑑𝜔   𝑖                                                                              (5) 

2.2 Factoring for dynamic radiance transfer 

For dynamic radiance transferring, an effective 

approach to accelerating the evaluation of equation 

(5) is stated as follows: 

𝐵 =    𝐹𝑗  𝜔   𝑖 

𝑛+1

𝑗 =1

 ∙ 𝐹𝑛+2 𝜔   𝑖 𝑑𝜔   𝑖  =   𝑇 ,  𝐹𝑛+2 𝜔   𝑖                     (6) 

where the radiance transfer vector T is the product 

of n+1 functions as: 

𝑇 =  𝐹𝑗  𝜔   𝑖 

𝑛+1

𝑗 =1

                                                                                           (7) 

If F1, F2, · · ·, Fn+1 are fixed, in other words, only 

Fn+2 varies (i.e., dynamic instead of static), radiance 

transfer vector T needs to be computed only once. 

Therefore, shading integral reduces to a simple 

double function product integral of T and Fn+2, 

which can be approximated by the wavelet 

importance sampling method. Here we assume that 

only one function in the shading integral varies. 

This assumption is reasonable for lighting design 

systems, where normally the designer adjusts only 

one variable at a time, and real-time feedback is 

highly appreciated. For example, the designer may 

experiment with different lighting effects by fixing 

view conditions and objects. The designer may also 

render the scene from different view conditions by 

fixing the lighting and the objects. Another popular 

operation is to fix the lighting and view conditions, 

and relocate a single object in the scene. As long as 

there is only one (note that it can be any one) 

varying parameter, this approach can be used to 

generate all-frequency shadows in real-time. 

  In equation (5), the product of n+2 functions is 

factored into the product of two sets, one with n+1 

functions, and the other with only one function. 

More generally, this factorization has the following 

form: 

𝐵 =    𝐹𝑗  𝜔   𝑖 

𝑘

𝑗 =1

 ∙   𝐹𝑗  𝜔   𝑖 

𝑛+2

𝑗=𝑘+1

 𝑑𝜔   𝑖  =   𝑇1
 ,  𝑇2                      (8) 

where 𝑇1 =  𝐹𝑗  𝜔   𝑖 
𝑘
𝑗=1  and 𝑇2 =  𝐹𝑗  𝜔   𝑖 

𝑛+2
𝑗=𝑘+1 . 

As a result, the product of n+2 functions reduces to 

the double function product integral of two radiance 

transfer vectors. 

 

 

3 Product importance sampling 

rendering with double functions 

3.1 Direct rendering 

The direct illumination is given by the integral: 

𝐿𝑑𝑖𝑟  𝒙, 𝜔   𝜊 =  𝑓𝑟 𝒙, 𝜔   𝑖 , 𝜔   𝜊 𝐿 𝒙, 𝜔   𝑖 𝑣(𝒙, 𝜔   𝑖)𝑐𝑜𝑠 𝜃𝑖 𝑑𝜔   𝑖𝛺
.        (9)  

where the incident radiance, 𝐿 𝒙,𝜔   𝑖 , is provided 

by light sources in the scene, and 𝑣(𝒙, 𝜔   𝑖) is the 

visibility of a light source in direction 𝜔   𝑖 . In order 

to apply realistic lighting to a virtual scene, it is 

common to capture real lighting in a high-dynamic 

range environment map, and use that for L during 

rendering. 

3.2 Product importance sampling estimator 

A common approach to evaluate the direct lighting 

equation is to use Monte Carlo integration, which 

replaces the continuous integral with the average of 

N Monte Carlo samples. 

  Burke et al. [3] introduced a technique for 
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rendering objects with complex materials 

illuminated by an environment map. 

In their work, the aim is to perform importance 

sampling using the product of the incident light 

distribution and the BRDF as the importance 

function: 

p 𝜔   𝑖 ∶=
𝑓
𝑟
 𝜔   𝑖, 𝜔   𝜊 𝐿 𝜔   𝑖 𝑐𝑜𝑠 𝜃𝑖 

 𝑓
𝑟
 𝜔   𝑖, 𝜔   𝜊 𝐿 𝜔   𝑖 𝑐𝑜𝑠 𝜃𝑖 𝑑𝜔   𝑖𝛺

                                    (10) 

Observe that the normalization term in the 

denominator is the direct illumination integral with 

the visibility term 𝑣(𝜔   𝑖) omitted. In other words, 

this term is the exitant radiance in the absence of 

shadows. Burke et al. refer to it as Lns .radiance, no 

shadows. [1]: 

𝐿𝑛𝑠   : =  𝑓𝑟 𝜔   𝑖 ,𝜔   𝜊 𝐿 𝜔   𝑖 𝑐𝑜𝑠 𝜃𝑖 𝑑𝜔   𝑖
𝛺

.                              (11) 

If sample directions 𝜔   𝑖
(𝑗 )

~𝑝 𝜔   𝑖 , 𝑗 = 1, … , 𝑁 , are 

drawn according to the product distribution in 

Equation (10), then Equation (9) can be estimated 

as 𝐿𝑁.𝑝 𝜔   𝜊 , where 

𝐿𝑁.𝑝 𝜔   𝜊 =
1

𝑁
 

𝑓𝑟  𝜔   𝑖
 𝑗  

, 𝜔   𝜊 𝐿   𝜔   𝑖
 𝑗  

 𝑣(𝜔   𝑖
 𝑗  

)𝑐𝑜𝑠 𝜃𝑖 

p  𝜔   𝑖
 𝑗  

 

𝑁

𝑗=1

       

=
𝐿𝑛𝑠

𝑁
   𝑣 𝜔   𝑖

 𝑗  
 

N

j=1

 .                                                                                (12) 

𝐿𝑁.𝑝 𝜔   𝜊  is referred to as the bidirectional 

estimator for the direct illumination integral.  

Fig. 1: Dragon model in an indoor HDR EM. Left: 

Importance sampling from BDRF, 200 samples/pixel. 

Right: Bidirectional importance sampling. 

As showed in Figure 1, note that the variance of 

the bidirectional estimator for the reflected radiance 

is proportional to the variance in the visibility 

function. This is an improvement over sampling 

techniques that only consider either the illumination 

or the BRDF in the sampling process. This is 

because the variance of these techniques depends in 

addition on the variance in the function that they do 

not sample from, BRDF or illumination 

respectively. 

 

 

4 Optimal Product importance 

sampling using wavelet 
The efficient computation of the multi-function 

product integral and the product of multiple 

functions are focused now. Compared with the pixel 

domain representation, wavelets allow us to 

approximate signals at low distortion with a small 

number of significant coefficients. Haar bases have 

an interesting property that simplifies the 

computation as many of the integral coefficients are 

zero [Mallat, et al.][8].  

4.1 2D Haar Bases 

Nonstandard Haar wavelet transform [Stollnitz et al. 

1996] [15] decomposes a 2
n
×2

n
 image into a 2D 

signal with 2
n
×2

n
 coefficients. Each coefficient 

corresponds to a basis function defined in the region 

<j, k, l> where j is the scale (0≤j<n), k and l are 

spatial translations (0≤k, l <2
j
). In each region <j, k, 

l>, four normalized 2D Haar basis functions are 

defined: 

 𝜙𝑡1 ,𝑡2

𝑗
 normalized Haar scaling basis function: 

𝜙𝑡1 ,𝑡2

𝑗  𝑥,𝑦 =  2𝑗𝜙0(2𝑗𝑥 − 𝑡1 , 2𝑗𝑦 − 𝑡2) 

where 𝜙0 is the mother scaling function. 

𝜓𝑘𝑙
𝑗

  normalized Haar wavelet basis function. 

There are three types of wavelets defined in the 

region <j, k, l>:     

𝜓𝑚 𝑡1 ,𝑡2

𝑗  𝑥, 𝑦 = 2𝑗𝜓𝑚
0 2𝑗𝑥 − 𝑡1, 2𝑗 𝑦 − 𝑡2 ,   

where 𝜓𝑚
0 , 𝑚 = 1,2,3, are three different mother 

wavelets, denoting the horizontal, vertical and 

diagonal differences. 

𝜙0=   𝜓1
0 =    𝜓2

0 =   𝜓3
0 =  

Fig.2: The mother scaling function and the three mother 

wavelet functions.  

A two-dimensional image can be further 

expressed as a sum of the first scaling function plus 

the wavelet functions as: 
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𝐹 = 𝐹0,0
0 𝜙0,0 +    𝐹𝑘 ,𝑡

𝑚 𝜓𝑘 ,𝑡
𝑚

𝑚𝒕

𝑙−1

𝑘=0

=  𝐹𝑖𝜓𝑖

𝑖

                                 (13) 

Here, set vector t = (t1, t2), F is a 

two-dimensional image with 2
l 
× 2

l
 pixels. 

4.2 General 2D Wavelet Product  

Given two functions expressed in an orthonormal 

basis, it is possible to multiply them together and 

get the product expanded in the same basis Ng et al. 

[9] 

Let 𝐺 =  𝐺𝑗 𝜓𝑗  and 𝐻 =  𝐻𝑘 𝜓𝑘   be the two 

images represented in the Haar basis. The wavelet 

product, 𝐹 =  𝐹𝑖 𝜓𝑖, of G and H is then given by: 

𝐹 = 𝐺 ∙ 𝐻   𝐹𝑖 𝜓𝑖 =  𝐺𝑗 𝜓𝑗 ∙ 𝐻𝑘 𝜓𝑘                                 (14) 

  By integrating against the i
th

 basis function, we 

can directly obtain the i
th

 coefficient for the wavelet 

representation of the product F as follows: 

𝐹𝑖 =  𝐹 𝑥 𝜓𝑖  𝑥 𝑑𝑥 =  𝜓𝑖  𝑥 𝐺 𝑥 𝐻 𝑥 𝑑𝑥 

=   𝐺𝑗𝐻𝑘𝑘𝑗  𝜓𝑖  𝑥 𝜓𝑗  𝑥 𝜓𝑘 𝑥 𝑑𝑥 =   𝐶𝑖𝑗𝑘 𝐺𝑗𝐻𝑘𝑘𝑗   (15)  

𝐶𝑖𝑗𝑘 =  𝜓𝑖  𝑥 𝜓𝑗  𝑥 𝜓𝑘 𝑥 𝑑𝑥                                                          (16) 

  Note that these equations are valid for any 

domain and suitable orthonormal basis, only the 

tripling coefficients will differ. Due to the compact 

support of the Haar basis functions, most of the 

tripling coefficients will be zero. The non-zero 

coefficients are given by the Haar tripling 

coefficient theorem by Ng R. [10]. The integral of 

three 2D Haar basis functions is non-zero if and 

only if one of the following three cases holds: 

1. All three are the scaling function. In this case, Cijk 

= 1. 

2. All three functions occupy the same wavelet 

square, and all are of different wavelet types. Cijk 

= 2
l
, where the square is at level l. 

3. Two are identical wavelets, and the third is either 

the scaling function or a wavelet that overlaps at 

a strictly coarser level. Cijk = ±2
l
, where the third 

function exists at level l. 

In this application, where we are looking at a 

specific basis function, 𝜓𝑖 , the theorem can be 

rewritten to make the different cases more clear: 

1. 𝜓𝑖  is the mother scaling function: 

(a)  𝜓𝑗  and 𝜓𝑘  are also the mother scaling 

function. Cijk = 1. 

(b)  𝜓𝑗  and 𝜓𝑘  are identical wavelets (at any 

level). Cijk = 1. 

2. 𝜓𝑖  is a wavelet function at level l: 

(a) All three functions occupy the same wavelet 

square and all are of different wavelet types. 

Cijk = 2
l
. 

(b) 𝜓𝑗  and𝜓𝑘  are identical wavelets under the 

support of 𝜓𝑖  and exist at a strictly finer level. 

Cijk = ±2
l
. 

(c) One of the wavelets is identical to 𝜓𝑖 , and the 

other is either the mother scaling function or a 

wavelet that overlaps at a strictly coarser level. 

Cijk = ±2
l’
 , where the coarser function exists at 

level l’. 

4.3 Wavelet importance sampling 

For simplicity, the image F(x) is defined to cover 

the unit square. Consider a wavelet square s = (l, t) 

at level l and translation t. The square has an area of 

A(s) = 2
−l

×2
−l

 = 2
−2l

. The average function value 

𝐹(𝑠) over the square, can be found by integrating 

the function over s [6]. However, due to the 

constant and disjoint scaling functions, the average 

function value is given by the scaling coefficient for 

the square as follows: 

𝐹 𝑠 =  𝐹 𝑥 𝑑𝑥

𝑠

= 2𝑙  𝜙𝑙 ,𝒕
0  𝑥 𝐹 𝑥 𝑑𝑥 = 2𝑙𝐹𝑙 ,𝒕

0                   (17) 

𝐼 =  𝐹 𝑥 𝑑𝑥 = 𝐹0,𝟎
0                                                                          (18) 

Thus, the probability density of the square s, is 

given by: 

𝑝 𝑠 =
𝐹(𝑠)

𝐼
= 2𝑙

𝐹𝑙 ,𝒕
0

𝐹0,𝟎
0                                                                            (19) 

the probability of placing a sample at a coordinate x 

within the square s, should be equal to: 

𝑝 𝑥 ∈ 𝑠 = 𝑝 𝑠 𝐴 𝑠 = 2−2𝑙
𝐹(𝑠)

𝐼
= 2−𝑙

𝐹𝑙 ,𝒕
0

𝐹0,𝟎
0                                 (20) 

For recursive algorithms, it is useful to know the 

conditional probabilities for each child square, 

given that the parent square is sampled. Let s be the 

parent square at level l, and let si, i = 1 . . . 4, be the 

four child squares at level l+1. The conditional 

probability for each of the four children can be 
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expressed in the function values for the parent and 

child squares as:  

𝑝 𝑥 ∈ 𝑠𝑖 |𝑥 ∈ 𝑠 =
𝑝 𝑥 ∈ 𝑠𝑖 

𝑝 𝑥 ∈ 𝑠 
=

2−2 𝑙+1 𝐹(𝑠𝑖)/𝐼

2−2𝑙𝐹(𝑠)/𝐼
=

1

4

𝐹(𝑠𝑖)

𝐹(𝑠)
         (21) 

and similarly expressed in scaling coefficients as: 

𝑝 𝑥 ∈ 𝑠𝑖 |𝑥 ∈ 𝑠 =
𝑝 𝑥 ∈ 𝑠𝑖 

𝑝 𝑥 ∈ 𝑠 
=

2− 𝑙+1 𝐹𝑙+1,𝒕
0 /𝐹0,𝟎

0

2−𝑙𝐹𝑙 ,𝒕
0 /𝐹0,𝟎

0 =
1

2

𝐹𝑙+1,𝒕
0

𝐹𝑙 ,𝒕
0        (22) 

4.4 Sampling of Wavelet Products 

For a simple case, the importance function f(x) is a 

product of only two functions, f(x) =g(x)h(x). We 

store approximations of g(x) and h(x) as images, G 

and H respectively, expressed as Haar wavelets. 

Then coefficients for the product F = G·H of the 

two wavelets can be computed using theory in 4.2.  

In practice, as stated in last section, it is 

unnecessary to compute detail coefficients for the 

wavelet product, as only the scaling coefficients at 

each level are needed for sampling. So the general 

product in 4.2 could be simplified by direct product 

of only scaling coefficients. While replacing 

𝜓𝑖 with the specific scaling function 𝜙𝑙 ,𝒕 , the 

scaling coefficient for the product is then given by: 

𝐹𝑙 ,𝒕
0 =  𝐹 𝑥 𝜙𝑙,𝒕  𝑥 𝑑𝑥 =  𝜙𝑙 ,𝒕  𝑥 𝐺 𝑥 𝐻 𝑥 𝑑𝑥 

=   𝐶𝑖𝑗𝑘
′ 𝐺𝑗𝐻𝑘𝑘𝑗                                                                                (23)  

where 𝐶𝑖𝑗𝑘
′  are modified tripling coefficients, 

defined as: 

𝐶𝑖𝑗𝑘
′ =  𝜙𝑙,𝒕  𝑥 𝜓𝑗  𝑥 𝜓𝑘 𝑥 𝑑𝑥                                                   (24)      

It turns out that the 𝐶𝑖𝑗𝑘
′  for a scaling function at 

level l are non-zero if and only if one of the 

following two cases holds: 

1.  𝜓𝑗  and 𝜓𝑘  are either the mother scaling 

function or wavelets at strictly coarser levels, lj 

and lk. 𝐶𝑖𝑗𝑘
′ = ±2𝑙𝑗+𝑙𝑘−𝑙  . 

2. 𝜓𝑗  and 𝜓𝑘  are identical wavelets under the 

support of 𝜙𝑙 ,𝒕, and exist at the same or finer 

levels. 𝐶𝑖𝑗𝑘
′ = 2𝑙  . 

the first case corresponds to a multiplication of the 

scaling coefficients for G and H at level l that 

overlap 𝜙𝑙 ,𝒕,  scaled by 2
l
, i.e., a multiplication of 

the scaling coefficients 𝐺𝑙 ,𝒕
0   and 𝐻𝑙 ,𝒕

0 . Hence, 

scaling coefficients for the product as: 

𝐹𝑙,𝒕
0 = 2𝑙𝐺𝑙,𝒕

0 𝐻𝑙,𝒕
0 + 2𝑙  𝐺𝑙 ′ ,𝒕′

𝑚 𝐻𝑙′ ,𝒕′
𝑚

𝑙 ′≥𝑙,𝒕′∈𝒕,𝑚

                         (25) 

where the summation is over all wavelet 

coefficients that are under the support of 𝜙𝑙 ,𝒕. the 

scaling coefficients  𝐺𝑙,𝒕
0   and 𝐻𝑙 ,𝒕

0  can easily be 

computed separately for the two functions, using 

standard wavelet reconstruction from their 

respective wavelet coefficients. 

This simplified way is much more efficient than 

the general one.Once the product F can be 

computed, the importance sampling probability 

computing is as same as above equations for single 

function case described in 4.3. 

 

 

5 Application and results 

In our application, the BRDF is given in local 

coordinates with respect to the reflection vector, 

while an environment map is commonly expressed 

in global coordinates. By rewriting the environment 

map as a four-dimensional function 𝐿 𝜔   , 𝜔   𝑟 , 

where the direction 𝜔    is given with respect to 𝜔   𝑟 , 

the environment map is in the same local space as 

the BRDF.  

By a change of variables, the BRDF can be 

transformed into a function that is more compact. 

There are many ways for such reparameterizations. 

In our application, we need a parameterization that 

is suitable for both the BRDF and for the 

environment map. The BRDF is centered about the 

reflection vector 𝜔   𝑟 = (𝜃𝑟 , 𝜑𝑟), instead of around 

the surface normal 𝑁   . 

In practice, both the BRDF and the environment 

map are tabulated as a sparse 2D set of 2D wavelet 

compressed images. The maps are stored at the 

resolution 64×64 or 128×128. 

 

Figure 3: 2D Wavelet transform applied on each 

hemisphere of the original BRDF data. 
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A non-standard approach of wavelet transform 

for fr is employed here (Figure 3). 

  A ray tracing rendering result is implemented and 

showed as figure 4.  

 

 

Fig. 4: Top: Structred sampling results;Bottom: Wavelet 

sampling rendering results 

 

 

6 Conclusions and future work 

Wavelet product importance sampling is an 

efficient way for static direct illumination with 

complex environment mapping. According to the 

feature of its product sampling of two functions, the 

factoring scheme we developed makes shading 

integral reduce to a simple double function product 

integral. Such way is suitable for dynamic global 

lighting situations with multiple objects where 

normally only one variable is adjusted at a time, and 

real-time feedback is highly appreciated.  

  A GPU enabled pipeline is also used to accelerate 

the real-time rendering and worked well in practice. 

  Wavelet representations of BRDF and EM 

provide novel approaches for complex rendering. 

The way we proposed here can be used in other 

domains where the efficient computation and 

real-time generation are critical such as game, 

animation, and simulation.  
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