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Abstract: As well known, it is very hard to evaluate the performance of applications in distributed environment, 
especially in grid computing. Because there are a lot of restriction factors, as well as we can't confirm the weight 
of these factors to performance. In this paper, we propose a method based soft computing to evaluate the 
performance of applications in distributed environment. We use the concept of Rough Set and history 
information to predict some target that the traditional methods can't obtain. The results of the experiment show 
that the use of soft computing can dealing with uncertain problem in distributed computing and obtain better 
result than traditional methods. It can be applied in widely area, such as predicting computing power, memory 
size, system throughput and so on. 
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1   Introduction 
Grid computing is employing the resources of many 
computer nodes in a network to a certain question, 
usually to a scientific, technical, and commerce 
problem that requires much computer process power 
or access to mass data. In concept, Grid computing is 
a subset of distributed computing; On the other hand, 
in function, Grid computing is expansion and 
continuity to distributed computing. Grid  emphasize 
coordination and cooperation between Grid 
resources[1-5]. 
     It becomes the encouraging trend, because of the 
following reasons: 
     (1) Grid computing can effectively make use of 
the existing resources. 
     (2) It can condense a large amount of computing 
capability to solve the problem which can not be 
solved before grid. 
     (3) It will build widely distributed computing 
platform to integrate all kinds of resource including 
computation power resource, data resource, network 
resource and so on. 
     The research of scientist now focus on the 
resource allcation and task schedulling in Grid 
computing. It is the key component in Grid sytem. In 
order to workout the above problem, scientist must 
estimate the performance of Grid. In this paper, we 
propose a method based soft computing to evaluate 
the performance of applications in distributed 
environment. We use the concept of Rough Set and 
history information to predict some target that the 
traditional methods can't obtain. The results of the 
experiment show that the use of soft computing can 
dealing with uncertain problem in distributed 

computing and obtain better result than traditional 
methods. It can be applied in widely area, such as 
predicting computing power, memory size, system 
throughput and so on. 
     The rest of this paper is organized as followed: 
We introduce some related Rough Set concept in 
section 2; and then we propose a novel reduct 
algorithm in section 3; in section 4, we conduct 
experiment to evaluate our approach. Finally in 
section 5, we conclude this paper. 
 
 
2   Related Concept on Rough Sets 
Theory 
Rough set theory was presented by Zdzis law Pawlak 
in the early 1980's. It deals with the classificatory 
analysis of information system. Its main idea is to 
maintain the ability of the same classification and 
derive classification rules through reducing 
knowledge. 
     Reduct is an very important aspect in rough sets 
theory. Reduct is an information system with 
minimal field sets, which remove the redundant data. 
The method for this idea is to search a certain fields 
that can represent original system wholly. So 
searching a reduct is to select some data with 
characteristic. Rough sets offers a set of method to 
find out all reduct. In this section, we introduce the 
principal concepts of rough sets theory related to our 
feature selection approach. The detail of the theory 
can be found in [6-10]. 
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2.1 Information System (IS) 
An information system is represented as a table, 
where each line represents a record. Every field 
represents a property. This two-dimensional table is 
called an information system: 
     S=(U,A) 
     where U is a non-empty finite set of records called 
the universe and A is a non-empty finite set of fields. 
In rough sets theory, an information system S is 
denoted as: 
     S={U,A,V,f} 
     where U is a finite set of records, U={ x1 , x2 ,. . . , 
xn }, A is a finite set of fields. The attributes in A can 
be classified into two disjoint subsets, condition 
attribute set C and decision attribute set D: 
      and DCA ∪= φ=∩ DC  
      and is a domain of attribute P. pAp VUV ∈= pV
     is a function which 

 for every . 
VAUf →×:

pi Vqx ∈),(f UxAq i ∈∈ ,
     A simple IS is shown in Fig.1. The information 
system, two-dimensional table, this information 
system is composed of six records and two fields. 
 

 F1 F2 
R1 R1F1 R1F2 
R2 R2F1 R2F2 
R3 R3F1 R3F2 
R4 R4F1 R4F2 
R5 R5F1 R5F2 
R6 R6F1 R6F2 

Fig. 1. Information System 
 
 
2.2 Indiscernibility Relation 
An information system presents all the knowledge in 
related area. This two-dimensional table may be 
unnecessarily large because it may be superfluous in 
the two dimensions. The same or indiscernible 
records may be described several times, or some of 
the attributes may be redundant. 
     Let P ⊆ A , xi, xj ∈ U . A binary relation IND 
called indiscernibility relation is defined as follow: 
     IND(P) = {(xi, xj)|(xi, xj) ∈ U × U, a ∈ P, f(xi, a) 
= f(xj, a)} 
     Let U/IND(P) denote the set of all equivalence 
classes of the relation IND(P). 
 
 
2.3 Lower Approximation 
Let R ⊆ C and X ⊆ U . The lower approximation of 
X with respect to R is defined as follow: 
     RX =_{Y ∈ U/R : Y ⊆ X} 

     RX is the set of all elements of U which can be 
with certain classified as elements of X, according to 
knowledge R. 
 
 
2.4 Positive Region 
Given an information system: 
     S= (U,A∪{d}) 
     let X U be a set of records and B A be a 
selected set of fields. The lower approximation of X 
with respect to B is: 

⊆ ⊆

     B*(X)={x∈U:[x]B X}. ⊆
     The upper approximation of X with respect to B is: 
     B*(X)={x∈U: [x]B∩X≠Φ}. 
     The positive region of decision d with respect to B 
is: 
     POSB(d)=∪{B*(X):X∈U/IND(d)} 
     The positive region of decision attribute with 
respect to B represents approximate quantity of B. 
Not all fields or records are necessary while 
describing approximate quantity of original IS, some 
are redundant. Reduct is the minimal set of fields 
describing approximate quantity. 
 
 
2.5 Reduct 
An attribute a is dispensable in B A if POSB(d)= 
POSB-{a}(d). A reduct of B is a set of attributes B’ B 
such that all attributes a∈B-B’ are dispensable, and 
POSB(d)= POSB’(d).  

⊆
⊆

     A reduct consists of the minimal set of condition 
attributes that have the same discerning ability as the 
original IS. In other words, the reduct includes the 
most significant attributes. All reducts of a dataset 
can be found by constructing a kind of discernibility 
function from the dataset and simplifying it. 
Unfortunately, it has been shown that finding 
minimal reduct or all reducts are both NP-hard 
problems. 
     There are usually many reducts in an information 
system. In fact, one can show that the number of 
reducts of an information system may be up to C|A|/2

|A|. 
In order to find reducts, discernibility matrix and 
discernibility function are introduced.  
 
 
2.6 Discernibility Matrix 
The discernibility matrix of an information system is 
a symmetric matrix: 
     |U|×|U| 
     with entries cij defined as: 
     {a∈A|a(xi)≠a(xj)} if d(xi)≠d(xj), Φ otherwise. 
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     A discernibility function can be constructed from 
discernibility matrix by or-ing all attributes in cij and 
then and-ing all of them together. After simplifying 
the discernibility function using absorption rule, the 
set of all prime implicants decides the set of all 
reducts of the IS.  
 
 
3   A Novel Reduct Algrithm 
The heuristic comes from the fact that intersection of 
a reduct and every items of discernibility matrix can 
not be empty. If there are any empty intersections 
between some item cij with some reduct, object i and 
object j would be indiscernible to the reduct. And this 
contradicts the definition that reduct is the minimal 
attribute set discerning all objects (assuming the 
dataset is consistent). 
     A straightforward algorithm can be constructed 
based on the heuristic. Let candidate reduct set R=Φ. 
We examine every entry cij of discernibility matrix. If 
their intersection is empty, a random attribute from cij 
is picked and inserted in R; skip the entry otherwise. 
Repeat the procedure until all entries of discernibility 
matrix are examined. We get the reduct in R. 
     The algorithm is simple and straightforward. 
However, in most times what we get is not reduct 
itself but superset of reduct. For example, there are 
three entries in the matrix: {a1, a3}, {a2, a3}, {a3}. 
According the algorithm, we get the reduct {a1, a2, a3} 
although it is obvious {a3} is the only reduct. This is 
because that our heuristic is a necessary but not 
sufficient condition for a reduct. The reduct must be a 
minimal one. The above algorithm does not consider 
this. In order to find reduct, especially shorter reduct 
in most times, we need more heuristics. 
     A simple yet powerful method is sort the 
discernibility matrix according |cij|. As we know, if 
there is only one element in cij, it must be a member 
of reduct. We can image that attributes in shorter and 
frequent |cij| contribute more classification power to 
the reduct. After sorting, we can first pick up more 
powerful attributes, avoid situations like example 
mentioned above, and more likely get optimal or 
sub-optimal reduct. 
     The sort procedure is like this. First, all the same 
entries in discernibility matrix are merged and their 
frequency is recorded. Then the matrix is sorted 
according to the length of every entry. If two entries 
have the same length, more frequent entry takes 
precedence. 
     When generating the discernibility matrix, 
frequency of every individual attribute is also 
counted for later use. The frequencies is used in 
helping picking up attribute when it is need to pick up 

one attribute from some entry to insert into reduct. 
The idea is that more frequent attribute is more likely 
the member of reduct. The counting process is 
weighted. Similarly, attributes appeared in shorter 
entry get higher weight. When a new entry c is 
computed, the frequency of corresponding attribute 
f(a) are updated as f(a)=f(a)+|A|/|c|, for every a∈c; 
where |A| is total attribute of information system. For 
example, let f (a1) =3, f (a3) =4, the system have 10 
attributes in total, and the new entry is {a1, a3}. Then 
frequencies after this entry can be computed: 
f(a1)=3+10/2=8; f(a3)=4+10/2=9.  
     Input: an information system (U, A∪ {d}), where 
A=∪ai, i=1,…,n. 
     Output: a reduct Red 

1. Red=Φ, count(ai)=0, for i=1,…n. 
2. Generate discernibility matrix M and count 

frequency of every attribute count(ai); 
3. Merge and sort discernibility matrix M; 
4. For every entry m in M do 
5. If (m∩Red = = Φ) 
6. select attribute a with maximal count(a) in m 
7. Red=Red∪{a} 
8. Endif 
9. EndFor  
10.Return Red 

Fig. 1. A Heuristic Reduct Algorithm 
     Figure 2 is a heuristic reduct algorithm written in 
pseudo-code. In line 2, when a new entry c of M is 
computed, count(ai) is updated. 
count(ai):=count(ai)+n/|c| for every ai∈|c|. In line 3, 
Same entries are merged and M is sorted according 
the length and frequency of every entry. Line 4-9 
traverses M and generates the reduct. 
 
 
4 Primary result of experiment 
We applied our rough sets approach in estimating the 
computation times of data-mining tasks. We 
differentiated the test case from the historical records 
by removing the runtime information. Thus, a test 
case consists of all the information specified except 
the recorded runtime. The runtime information 
recorded in the test case was the task's actual runtime. 
The idea was to determine an estimated runtime 
using our prediction technique and compare it with 
the task's actual runtime. 
     We compiled a history of data-mining tasks by 
running several data-mining algorithms and 
recording information about the tasks and 
environment. We executed several runs of 
data-mining jobs by varying the jobs' parameters 
such as the mining algorithm, the data sets and the 
sizes of the data sets. The algorithms we used were 
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from the Weka package of data-mining algorithms. 
We generated several data sets of sizes varying from 
1 to 20 Mbytes. 
     The simulated environment is similar to an actual 
Grid environment, composed of three machines 
which installed with GT3. Each machine is 
interconnected by a switched fast Ethernet. Three 
distributed machines with different physical 
configurations and operating systems: a Pentium III 
running Windows 2000 with an 833-MHz processor 
and 512 Mbytes of memory; a Pentium 4 running 
Windows 2000 with a 2.0 GHz processor and 
1Gbytes of memory; and a Sun Sparc station running 
Sun OS 5.8 with a 444-Mhz processor and 256 
Mbytes of memory. For each data-mining job, we 
recorded the following information in the history: the 
algorithm, file name, file size, operating system, 
operating system version, IP address of the local host 
on which the job was run, processor speed, amount of 
memory, bandwidth, and start and end times. We 
used histories with 100 and 150 records, and as 
before, each experimental run consisted of 25 tests. 
     In our experiment, the mean error was 0.23 
minutes, and the mean error as a percentage of the 
actual runtimes was 7.6 percent. This shows that we 
accurately estimated the runtime for data-mining 
tasks on Grid. The reduct that our algorithm selected 
as a similarity template included the bandwidth, 
algorithm, file size, dimensionality, and available 
memory attribute. Figure 4 illustrates the actual and 
estimated runtimes from one of our experimental 
runs. 
 
 
5 Conclusions 
We have presented a novel rough sets approach to 
estimating application run times. The approach is 
based on frequencies of attributes appeared in 
discernibility matrix. The theoretical foundation of 
rough sets provides an intuitive solution to the 
problem of application run time estimation on K-Grid. 
Our hypothesis that rough sets are suitable for 
estimating application run time in Grid environment 
is validated by the experimental results, which 
demonstrate the good prediction accuracy of our 
approach. The estimation technique presented in this 
paper is generic and can be applied to others 
optimization problems. 
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