
Evaluating performance of Grid based on Soft Computing

KUN GAO, ZHONGWEI CHEN, WAN ZHONG
Computer Science and Information Technology College

Zhejiang Wanli University
No. 8, South Qian Hu Road, 315100, Ningbo, Zhejiang

P. R. China

Abstract: As well known, it is very hard to evaluate the performance of applications in distributed environment,
especially in grid computing. Because there are a lot of restriction factors, as well as we can't confirm the weight
of these factors to performance. In this paper, we propose a method based soft computing to evaluate the
performance of applications in distributed environment. We use the concept of Rough Set and history
information to predict some target that the traditional methods can't obtain. The results of the experiment show
that the use of soft computing can dealing with uncertain problem in distributed computing and obtain better
result than traditional methods. It can be applied in widely area, such as predicting computing power, memory
size, system throughput and so on.

Key-Words: Performance Evaluation, Distributed computing, soft computing

1 Introduction
Grid computing is employing the resources of many
computer nodes in a network to a certain question,
usually to a scientific, technical, and commerce
problem that requires much computer process power
or access to mass data. In concept, Grid computing is
a subset of distributed computing; On the other hand,
in function, Grid computing is expansion and
continuity to distributed computing. Grid emphasize
coordination and cooperation between Grid
resources[1-5].
 It becomes the encouraging trend, because of the
following reasons:
 (1) Grid computing can effectively make use of
the existing resources.
 (2) It can condense a large amount of computing
capability to solve the problem which can not be
solved before grid.
 (3) It will build widely distributed computing
platform to integrate all kinds of resource including
computation power resource, data resource, network
resource and so on.
 The research of scientist now focus on the
resource allcation and task schedulling in Grid
computing. It is the key component in Grid sytem. In
order to workout the above problem, scientist must
estimate the performance of Grid. In this paper, we
propose a method based soft computing to evaluate
the performance of applications in distributed
environment. We use the concept of Rough Set and
history information to predict some target that the
traditional methods can't obtain. The results of the
experiment show that the use of soft computing can
dealing with uncertain problem in distributed

computing and obtain better result than traditional
methods. It can be applied in widely area, such as
predicting computing power, memory size, system
throughput and so on.
 The rest of this paper is organized as followed:
We introduce some related Rough Set concept in
section 2; and then we propose a novel reduct
algorithm in section 3; in section 4, we conduct
experiment to evaluate our approach. Finally in
section 5, we conclude this paper.

2 Related Concept on Rough Sets
Theory
Rough set theory was presented by Zdzis law Pawlak
in the early 1980's. It deals with the classificatory
analysis of information system. Its main idea is to
maintain the ability of the same classification and
derive classification rules through reducing
knowledge.
 Reduct is an very important aspect in rough sets
theory. Reduct is an information system with
minimal field sets, which remove the redundant data.
The method for this idea is to search a certain fields
that can represent original system wholly. So
searching a reduct is to select some data with
characteristic. Rough sets offers a set of method to
find out all reduct. In this section, we introduce the
principal concepts of rough sets theory related to our
feature selection approach. The detail of the theory
can be found in [6-10].

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 53

2.1 Information System (IS)
An information system is represented as a table,
where each line represents a record. Every field
represents a property. This two-dimensional table is
called an information system:
 S=(U,A)
 where U is a non-empty finite set of records called
the universe and A is a non-empty finite set of fields.
In rough sets theory, an information system S is
denoted as:
 S={U,A,V,f}
 where U is a finite set of records, U={ x1 , x2 ,. . . ,
xn }, A is a finite set of fields. The attributes in A can
be classified into two disjoint subsets, condition
attribute set C and decision attribute set D:
 and DCA ∪= φ=∩ DC
 and is a domain of attribute P. pAp VUV ∈= pV
 is a function which

 for every .
VAUf →×:

pi Vqx ∈),(f UxAq i ∈∈ ,
 A simple IS is shown in Fig.1. The information
system, two-dimensional table, this information
system is composed of six records and two fields.

 F1 F2
R1 R1F1 R1F2
R2 R2F1 R2F2
R3 R3F1 R3F2
R4 R4F1 R4F2
R5 R5F1 R5F2
R6 R6F1 R6F2

Fig. 1. Information System

2.2 Indiscernibility Relation
An information system presents all the knowledge in
related area. This two-dimensional table may be
unnecessarily large because it may be superfluous in
the two dimensions. The same or indiscernible
records may be described several times, or some of
the attributes may be redundant.
 Let P ⊆ A , xi, xj ∈ U . A binary relation IND
called indiscernibility relation is defined as follow:
 IND(P) = {(xi, xj)|(xi, xj) ∈ U × U, a ∈ P, f(xi, a)
= f(xj, a)}
 Let U/IND(P) denote the set of all equivalence
classes of the relation IND(P).

2.3 Lower Approximation
Let R ⊆ C and X ⊆ U . The lower approximation of
X with respect to R is defined as follow:
 RX =_{Y ∈ U/R : Y ⊆ X}

 RX is the set of all elements of U which can be
with certain classified as elements of X, according to
knowledge R.

2.4 Positive Region
Given an information system:
 S= (U,A∪{d})
 let X U be a set of records and B A be a
selected set of fields. The lower approximation of X
with respect to B is:

⊆ ⊆

 B*(X)={x∈U:[x]B X}. ⊆
 The upper approximation of X with respect to B is:
 B*(X)={x∈U: [x]B∩X≠Φ}.
 The positive region of decision d with respect to B
is:
 POSB(d)=∪{B*(X):X∈U/IND(d)}
 The positive region of decision attribute with
respect to B represents approximate quantity of B.
Not all fields or records are necessary while
describing approximate quantity of original IS, some
are redundant. Reduct is the minimal set of fields
describing approximate quantity.

2.5 Reduct
An attribute a is dispensable in B A if POSB(d)=
POSB-{a}(d). A reduct of B is a set of attributes B’ B
such that all attributes a∈B-B’ are dispensable, and
POSB(d)= POSB’(d).

⊆
⊆

 A reduct consists of the minimal set of condition
attributes that have the same discerning ability as the
original IS. In other words, the reduct includes the
most significant attributes. All reducts of a dataset
can be found by constructing a kind of discernibility
function from the dataset and simplifying it.
Unfortunately, it has been shown that finding
minimal reduct or all reducts are both NP-hard
problems.
 There are usually many reducts in an information
system. In fact, one can show that the number of
reducts of an information system may be up to C|A|/2

|A|.
In order to find reducts, discernibility matrix and
discernibility function are introduced.

2.6 Discernibility Matrix
The discernibility matrix of an information system is
a symmetric matrix:
 |U|×|U|
 with entries cij defined as:
 {a∈A|a(xi)≠a(xj)} if d(xi)≠d(xj), Φ otherwise.

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 54

 A discernibility function can be constructed from
discernibility matrix by or-ing all attributes in cij and
then and-ing all of them together. After simplifying
the discernibility function using absorption rule, the
set of all prime implicants decides the set of all
reducts of the IS.

3 A Novel Reduct Algrithm
The heuristic comes from the fact that intersection of
a reduct and every items of discernibility matrix can
not be empty. If there are any empty intersections
between some item cij with some reduct, object i and
object j would be indiscernible to the reduct. And this
contradicts the definition that reduct is the minimal
attribute set discerning all objects (assuming the
dataset is consistent).
 A straightforward algorithm can be constructed
based on the heuristic. Let candidate reduct set R=Φ.
We examine every entry cij of discernibility matrix. If
their intersection is empty, a random attribute from cij
is picked and inserted in R; skip the entry otherwise.
Repeat the procedure until all entries of discernibility
matrix are examined. We get the reduct in R.
 The algorithm is simple and straightforward.
However, in most times what we get is not reduct
itself but superset of reduct. For example, there are
three entries in the matrix: {a1, a3}, {a2, a3}, {a3}.
According the algorithm, we get the reduct {a1, a2, a3}
although it is obvious {a3} is the only reduct. This is
because that our heuristic is a necessary but not
sufficient condition for a reduct. The reduct must be a
minimal one. The above algorithm does not consider
this. In order to find reduct, especially shorter reduct
in most times, we need more heuristics.
 A simple yet powerful method is sort the
discernibility matrix according |cij|. As we know, if
there is only one element in cij, it must be a member
of reduct. We can image that attributes in shorter and
frequent |cij| contribute more classification power to
the reduct. After sorting, we can first pick up more
powerful attributes, avoid situations like example
mentioned above, and more likely get optimal or
sub-optimal reduct.
 The sort procedure is like this. First, all the same
entries in discernibility matrix are merged and their
frequency is recorded. Then the matrix is sorted
according to the length of every entry. If two entries
have the same length, more frequent entry takes
precedence.
 When generating the discernibility matrix,
frequency of every individual attribute is also
counted for later use. The frequencies is used in
helping picking up attribute when it is need to pick up

one attribute from some entry to insert into reduct.
The idea is that more frequent attribute is more likely
the member of reduct. The counting process is
weighted. Similarly, attributes appeared in shorter
entry get higher weight. When a new entry c is
computed, the frequency of corresponding attribute
f(a) are updated as f(a)=f(a)+|A|/|c|, for every a∈c;
where |A| is total attribute of information system. For
example, let f (a1) =3, f (a3) =4, the system have 10
attributes in total, and the new entry is {a1, a3}. Then
frequencies after this entry can be computed:
f(a1)=3+10/2=8; f(a3)=4+10/2=9.
 Input: an information system (U, A∪ {d}), where
A=∪ai, i=1,…,n.
 Output: a reduct Red

1. Red=Φ, count(ai)=0, for i=1,…n.
2. Generate discernibility matrix M and count

frequency of every attribute count(ai);
3. Merge and sort discernibility matrix M;
4. For every entry m in M do
5. If (m∩Red = = Φ)
6. select attribute a with maximal count(a) in m
7. Red=Red∪{a}
8. Endif
9. EndFor
10.Return Red

Fig. 1. A Heuristic Reduct Algorithm
 Figure 2 is a heuristic reduct algorithm written in
pseudo-code. In line 2, when a new entry c of M is
computed, count(ai) is updated.
count(ai):=count(ai)+n/|c| for every ai∈|c|. In line 3,
Same entries are merged and M is sorted according
the length and frequency of every entry. Line 4-9
traverses M and generates the reduct.

4 Primary result of experiment
We applied our rough sets approach in estimating the
computation times of data-mining tasks. We
differentiated the test case from the historical records
by removing the runtime information. Thus, a test
case consists of all the information specified except
the recorded runtime. The runtime information
recorded in the test case was the task's actual runtime.
The idea was to determine an estimated runtime
using our prediction technique and compare it with
the task's actual runtime.
 We compiled a history of data-mining tasks by
running several data-mining algorithms and
recording information about the tasks and
environment. We executed several runs of
data-mining jobs by varying the jobs' parameters
such as the mining algorithm, the data sets and the
sizes of the data sets. The algorithms we used were

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 55

from the Weka package of data-mining algorithms.
We generated several data sets of sizes varying from
1 to 20 Mbytes.
 The simulated environment is similar to an actual
Grid environment, composed of three machines
which installed with GT3. Each machine is
interconnected by a switched fast Ethernet. Three
distributed machines with different physical
configurations and operating systems: a Pentium III
running Windows 2000 with an 833-MHz processor
and 512 Mbytes of memory; a Pentium 4 running
Windows 2000 with a 2.0 GHz processor and
1Gbytes of memory; and a Sun Sparc station running
Sun OS 5.8 with a 444-Mhz processor and 256
Mbytes of memory. For each data-mining job, we
recorded the following information in the history: the
algorithm, file name, file size, operating system,
operating system version, IP address of the local host
on which the job was run, processor speed, amount of
memory, bandwidth, and start and end times. We
used histories with 100 and 150 records, and as
before, each experimental run consisted of 25 tests.
 In our experiment, the mean error was 0.23
minutes, and the mean error as a percentage of the
actual runtimes was 7.6 percent. This shows that we
accurately estimated the runtime for data-mining
tasks on Grid. The reduct that our algorithm selected
as a similarity template included the bandwidth,
algorithm, file size, dimensionality, and available
memory attribute. Figure 4 illustrates the actual and
estimated runtimes from one of our experimental
runs.

5 Conclusions
We have presented a novel rough sets approach to
estimating application run times. The approach is
based on frequencies of attributes appeared in
discernibility matrix. The theoretical foundation of
rough sets provides an intuitive solution to the
problem of application run time estimation on K-Grid.
Our hypothesis that rough sets are suitable for
estimating application run time in Grid environment
is validated by the experimental results, which
demonstrate the good prediction accuracy of our
approach. The estimation technique presented in this
paper is generic and can be applied to others
optimization problems.

References:
[1] M. Cannataro, D. Talia, P. Trunfio,

KNOWLEDGE GRID: High Performance
Knowledge Discovery Services on the Grid. Proc.
GRID 2001, LNCS, Springer-Verlag, 2001.

[2] Foster I. and Kesselman C. (eds.) The Grid:
Blueprint for a Future Computing Inf., Morgan
Kaufmann Publishers, 1999.

[3] A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke. The Data Grid: towards
an architecture for the distributed management
and analysis of large scientific datasets. J. of
Network and Comp. Appl, 2001.

[4] A.B. Downey , "Predicting Queue Times on
Space-Sharing Parallel Computers,"Proc. 11th
Int'l ParallelProcessing Symp. (IPPS 97), IEEE
CS Press, 1997

[5] R. Gibbons , "A Historical Application Profiler
for Use by Parallel Schedulers,"Job Scheduling
Strategies for Parallel Processing , LNCS 1291,
Springer-Verlag, 1997

[6] X.Hu, Knowledge discovery in databases: An
attribute-oriented rough set approach, Ph.D thesis,
Regina university, 1995.

[7] J.Starzyk, D.E.Nelson, K.Sturtz, Reduct
generation in information systems, Bulletin of
international rough set society, volume 3, 1998.

[8] S.K.Pal, A.Skowron, Rough Fuzzy
Hybridization-A new trend in decision-making,
Springer, 1999.

[9] Witten,I,H., and Eibe,F., “Data Mining: Practical
Machine Learning Tools and Techniques with
Java Implementations”, Morgan Kauffman, 1999.

[10] Keyun Hu, lili Diao and Chunyi Shi: A Heuristic
Optimal Reduct algorithm. 22nd Intl. Sym. on
Intelligent Data Engineering and Automated
Learning (IDEAL2000), Hong Kong, (2002)

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 56

