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Abstract: - This paper addresses the integration of HW and SW for a 3 mm x 3 mm x 3 mm autonomous 
microrobot called I-SWARM. The robot is intended to be part of a swarm of up to 1000 members for studying 
large scale swarm behaviour. The robot is the smallest autonomous robot of the world, equipped with a vibrating 
contact sensor, a four directional infrared communication module, vibrating legs and an ASIC.  It presents an 
overall architecture of the robot and the SW used. The software is comprised of a hardware abstraction layer and 
an interpreter for a specially designed control language. 
 
Key-Words: - Micorobotic, Swarm, SoC , low power 
 
1   Introduction 
Swarm robotics is a new approach to the coordination 
of multirobot systems which consist of large numbers 
of relatively simple physical robots. The goal of these 
systems is to execute tasks, which may be inherently 
too complex or impossible for a single robot and 
benefits can be gained from using multiple robots. 
Those tasks are achieved by building and using 
several simple and cheap robots than having a very 
complex and powerful single robot. The requirements 
for a robot in a swarm depend on the scenario to be 
executed. The most basic scenarios require usually at 
least locomotion and basic perception of the 
environment. With these cooperative mobile robots 
become an inherent approach in the social sciences 
(organization theory, economics, cognitive 
psychology), and life sciences (theoretical biology, 
animal ethnology). The absence of a central control is 
the most important fact in these systems and it calls 
decentralized systems using terms as “emergence” 
and “self-organization”. These terms in a swarm are 
the ability to distribute itself “optimally” for a given 
task exhibiting collectively intelligent behaviour with 
non-intelligent robots. In collective robotics, 
communication is crucial for coordinating behaviour 
among robots. Communications among different 
members of the swarm or a detailed analysis of the 
environment enable more complex scenarios [1]. 

These single robots have limited capabilities. 
Therefore, microrobots need to operate in very large 
group or swarms to affect the macroworld. Simple 
agents can be constructed/programmed to achieve 

collective swarm tasks. These can send orders, share 
information, change their current task/role if a 
member of the system fails. They can even reprogram 
another member of the collective if the robots are 
provided with this ability [2]. 

 
I-SWARM [3] is an autonomous microrobot of 3 x 

3 x 3 mm3 powered with solar cells. It has been 
designed with the capability to move, communicate, 
and sense in order to act as a member of a swarm of 
other I-SWARM robots. Each agent senses its 
environment and uses this information to take 
decisions, execute different tasks or learn as shown in 
Fig.1. Because of the small dimensions of the robot, 
all the electronics have been integrated on the SoC. 

 

 
Fig.1. Flow control of a swarm robot 

 
The SW used in this robot is based on finite state 

machine operating system (FSMO) JaMOS [4] that 
senses the environment and acts depending on the 
state and the role of the robot in the swarm.  

 
This paper presents the integration process between 

HW and SW to achieve that the I-SWARM robot 
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solves a specific scenario. This means, how the SW 
uses and operates the HW provided by the robot. A 
simple processor (the embedded 8051 and integrated 
memories) is not able to control all the robot 
components without exceeding the power 
requirements. The I-SWARM robot is described in 
section II. The overall architecture of the robot is 
described in section III. Section IV describes the 
integration between HW and SW. Section V 
describes the SW language used. The control cycle of 
the SW is described in section VI. The combination 
between the SW and the HW modules is described in 
section VII, and finally, the section VIII shows the 
experiments realized. 
 
 
2   I-SWARM Robot 
I-SWARM robot has been conceived in order to 
create a swarm of up to 1000 robots as well as to 
provide a platform to run different swarm scenarios 
and algorithms. Some of the scenarios are 
aggregation, pattern forming and object recognition.  

 
The electronics of an I-SWARM robot as well as 

the actuators are mounted over a flexible printed 
circuit board (FPCB). This FPCB is folded as a 
sandwich and is mounted over the locomotion unit. It 
has been fabricated by the Department of Materials 
Science (DMS), Uppsala [5]. The three legs are bent 
out of plane (45º). The VCS is mounted at the middle 
of one side of the FPCB. The IR communication 
system is an optoelectronic system composed of four 
pairs of one photodiode and one LED placed at every 
side of the robot and it has been fabricated by the 
Scuola Superiore Sant Anna (SSSA), Italy [6]. 

 
Each I-Swarm robot is controlled by a SoC 

designed specifically for this purpose. The power is 
supplied by a group of solar cells mounted at the top 
of the robot. The cells are not connected directly to 
the electronics but to two tantalum capacitors that 
store the energy. Two additional smaller solar cells, 
SC1 and SC2, mounted in opposite sides of the robot 
top surface are used to program the robots and to 
provide the global positioning of the robot in the 
arena (Fig 2) [7]. 

 
 
 
3   Overall Architecture 
The collective behaviour of the swarm emerges 
because each agent takes decisions as a function of 
the data collected from its environment and his role 
inside the robotic swarm. In an I-SWARM robot, the 

decisions and the data processing are performed by 
an 8051 microprocessor embedded on the SoC 
provided of 8 kB of program memory that stored the 
program code and 2 kB for data to store some values 
and variables. The 8051 work in parallel with specific 
hardware blocks dedicated to the control of each of 
the robot functionalities (Fig.3). These are: 

 
- Locomotion Control Unit (LCU)   [8] 
- Optoelectronic Control Unit (OCU)   [9] 
- VCS Control Unit (VCSCU)   [10] 
- Program Control Unit (PCU) 

 

 
Fig.2. I-SWARM robot concept  

 
The existence of these specific hardware modules 

reduces the size of the BIOS because basic tasks as 
forward movements or frame sending can be 
implemented by hardware. The space not occupied by 
the BIOS is used to load finite state machine 
operating system (FSMOS).  

 
The 8051 can adjust its working frequency 

(Dynamic Frequency Scaling, DFS) as a function of 
the workload in order to save power. However, 
software needs the 8051 timers so it can not change 
the working frequency. To avoid the non use of DFS 
which is advantageous from the point of view of 
power management, the SoC is provided with two 
timers which run with the 12 MHz. With the 
additional timers the 8051 can modify its frequency 
and the timers still runs constantly at 12 MHz. These 
two timers determine the control cycle of the SW 
execution, as is explained in section 6. 

The SoC has a Power Management Unit (PMU) to 
save power in those cases that no computation has to 
be performed. The PMU can stop the clock of the 
processor. The clock can be activated again when one 
of the controllers generates an interrupt. The way of 
using the PMU in order to optimize the power 
consumption of the SoC is running the 8051 at the 
lowest frequency, 1.46 kHz, during periods of 
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inactivity or when one or more controllers are 
performing a task. When any of these finishes, the 
8051 has to take a decision and continue executing a 
SW plan. If it is necessary, the 8051 can speed up this 
process by incrementing its working frequency. 
When it finishes, the clock can be set again at the 
lowest frequency 1.46 kHz or even stopped until a 
controller requires the 8051 services. 

 

 
Fig.3. Overall architecture of the SoC 
 

 
4   Integration between HW and SW 
SW consists of two main layers. The hardware 
abstraction layer (HAL) also called BIOS and an 
interpreter. The interpreter itself consists of two 
layers, one that connects the interpreter with the HAL 
and another one that does the interpretation.  

The HAL configures the HW and puts it in the 
correct state. After configuring the hardware the 
interpreter starts interpreting its program given in a 
special language as a byte code. This language is the 
extended Motion Language Two (MDL2є), and it is 
explained at the next section. The decision to use an 
interpreted language was guided by the fact, that 
programming the robot via the beamer needs 45 
minutes for 8kB. The interpreter enables us to load 
programmes of 256 – 512 Bytes without touching the 
HAL and the interpreter. This reduces the 
programming time during different experiments by a 
factor of up to 32.  
 

5   Extended motion description 
language two 

 
 

5.1   Overview 
The extended Motion Description Language Two 
(MDL2є) is a high-level language for implementing 
behaviour-based control programs for relative simple 
robots. MDL2є is based on MDLe by Manikonda et 
al. [11] but incorporates several improvements 
leading from a control language driven by control 
theory to a fully functional control language for 
autonomous robots. MDL2є therefore aims on: 

1. hiding low-level robot implementation details 
from the user, 

2. reducing code-size, 
3. providing the user with a simple and easy to 

use control language, 
4. simple concept of integrating MDL2є in robot 

simulation environments and different robotic 
platforms. 

 

5.2   Concept 
MDL2є is conceptual similar to a regular expression. 
MDL2є-programs are called plans and are usually 
implemented in an xml-file. MDL2є provides the 
user with an alphabet, which is a set of so called 
atoms (ATOM), and a set of non-terminals or  
MDL2є-operators that control the control flow. 
Atoms let the robot interact with its environment or 
change its internal state. Typical atoms for interacting 
with the environment are AMOVE, which makes the 
robot move forward, or ASEND, that sends a 
message to other robots. An atom that changes the 
internal state is for instance ASETROLE, which 
changes the role of the robot for instance switching 
from a worker to a soldier role showing different 
behaviours. 

The non-terminals are multiplicity (MULT), union 
(UNION), random union (RUNION), behaviour 
(BEHAVIOUR) and plan (PLAN). The multiplicity is 
a looping operator that loops for a given time or 
infinite. The union acts like a if-than-else-statement 
which selects the first valid subnode stated in the xml 
expression <UNION multiplicity=”5”> <subnode/> . 
. .<subnode/> </UNION>. How a subnode can be 
valid or invalid will be described later. 

The random union randomly selects one of its 
subnodes. Each subnode holds as attribute its own 
probability value, which is used to calculate a simple 
normalised probability distribution for the selection 
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process. 
The behaviour operator is a simple bracket around 

a set of arbitrary MDL2є operators and atoms. 
However, behaviours and atoms are in some way 
special. Their attributes include an interrupt and a 
duration. The duration is a simple timer that states 
how many MDL2є-cycles a behaviour or atom has to 
be executed also infinite execution is possible. The 
interrupts connect the behaviours and atoms to the 
robot’s internal and external state. If the interrupt of 
an atom or behaviour is true the atom and behaviour 
will be called valid or active otherwise invalid or 
inactive. If an atom or behaviour becomes invalid a 
new valid atom will be selected from the plan. 
Multiplicity, union and random union are considered 
as always valid. To distinguish between those 
interrupts and the hardware interrupts generated by 
the ASIC. We will refer to those either as       
MDL2є-interrupts or hardware interrupts. Finally is a 
plan a special behaviour that has no interrupt just a 
duration. The duration of a plan is usually set to 
infinite a plan is the entry point for a MDL2є-
program and surrounds all other nodes. 

A plan is an arbitrary combination of the latter 
control flow operators and atoms. Valid operators and 
atoms will be executed sequentially as long as no 
control flow operator changes the flow of execution. 
 
 
6   Mdl2є Control Cycle 
The whole control process is embedded into the 
MDL2є control cycle. This cycle usually consist of 
the following three steps: 

 
1. Check if the current behaviours or atom is 

valid: 
 yes: continue executing the current atom 

  no:  select the next valid atom from the plan 
  and execute it. 

2. Gather sensor information and update MDL2є-
interrupts. 

3. Decrement the timers of the behaviours and 
the atom. 

In the I-SWARM-robot sensors do not have to be 
polled for information. All actuators and sensors 
inform the CPU by a hardware interrupt that they 
entered a new state. For instance a message 
arrived/was send or a motion has been finished. This 
allows a very energy efficient integration of the 
MDL2є control paradigm exploiting all the features 
of the Power Management Unit (PMU). The 
integration will be described in detail in the following 
section.  

7   Combining Mdl2є and the Power 
Management Unit 
The PMU enables the software engineer to power 
down all sub modules of the ASIC independently. 
This makes energy saving very convenient from the 
MDL2є point of view. Acting modules like the 
Motion Control Unit can be turned on by an atom 
when needed and also turned of either in an interrupt 
service routine (when motion has finished) or by 
another atom. Switching of the Optical Control Unit 
(OCU) or the vibrating needle makes no sense from 
the robot’s point of view as it is the only sensor that 
makes the robot aware of other robots or obstacles. 
However, if energy is scarce those units can also be 
turned off automatically by appropriate atoms. For 
instance sending and receiving a message may not 
possible while walking, than the AMOVE would also 
turn off the OCU. 

Significantly most of the energy is consumed when 
the DW8051 μController accesses to the internal 
memories. Here the PMU provides us with a very 
important feature. The DW8051 can be set to a sleep 
mode, by simply disconnecting it from the clock 
signal, for a given time. Instead of using an external 
timer for the MDL2є-duration of an atom or 
behaviour the DW8051 can be set in sleep mode. 
This significantly reduces the frequency of step one 
of the execution cycle. 

 
The DW8051 one can be awaken by all peripheral 
hardware interrupts during the sleep mode and handle 
them in the interrupt service routines (ISR). Some 
hardware interrupts affect the MDL2є-interrupts. 
Table 1 describes the pseudo-code of the 
implemented loop the DW8051 is continuously send 
to sleep mode, when it awakes it is checked if it has 
been awaken by the sleep timer or any other interrupt. 
If it was the sleep timer all software timers 
(durations) are decremented and the controller is send 
back to sleep mode. If any other interrupt occurred or 
a software timer overflow occurred it is checked if 
the current behaviours and the atom are still valid. If 
not a new atom will be selected from the plan.  
 
 
 
8   Experiments and Evaluation 
Experiments have been performed to evaluate the 
concept. The MDL2є-cyle duration has been set to 
20ms. We selected 20ms as it corresponds with the 
integration step time of our robot simulator. This 
improves the transfer of plans written in the simulator 
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to the robot. However, the cycle time can be adapted 
to reduce the power consumption.  

As test scenario one of the final I-SWARM 
scenarios has been selected. In this scenario the 
robots have to collectively optimise a function given 
by the environment. The algorithm is inspired by 
honeybees and has bee developed by our partners 
from Graz T. Schickel et al. The implementation of 
the algorithm in MDL2є is given in Table 2. 

 
Table 1. MDL2є cycle for the I-SWARM-robot. 

 
01 while (true) { 
02  select-valid-atom; 
03  do { 
04      clear-software-interrupts; 
05      do { 
06   PMU-send-DW8051-to-sleep; 
07   if (waken-up-by-PMU-sleep-timer) 
08      decrement-software-timers; 
09      } while ( no-new-message 
10        AND no-collision 
11      AND motion-not-finished 
12      AND no-software-timer-overflow); 
13  } while( no-MDL2e-interruption ); 
14 } 

 
The algorithm it self is very simple. The robots 

perform a random walk until they meet another robot. 
Then they measure the value of the environmental 
pattern and stop as a linear function of the measured 
value. This leads to an aggregation in the spot with 
the highest value.  

The whole algorithm has been analysed regarding 

the needed CPU time. The DW8051 ran with a fixed 
clock of 6 MHz. The input to the ASIC had been 
controlled via an RS232 connection by a specially 
designed application. In this way it was possible to 
have a look at the single parts of the plan. 

Fig.4 exemplary shows what has been measured 
during the test. Interesting for the HW and SW 
integration using the PMU is the duty time of the 
DW8051 during the interpretation of the MDL2є byte 
code. The duty during the interpretation which 
includes operant fetching, interrupt analysis and 
including the execution of a newly found atom lay 
between 10 and 40ms. The MDL2є-cyle for sending 
the DW8051 back to sleep and reducing the software 
timers took about 280us. In this picture we can see 
the RUNION code part of the plan presented in Table 
2. On the left side of this image, we can see the 
AROT_L atom. This means the only one of the two 
frontal legs are moving (D13 and D14 on Fig.4.). 
This atom is executed during 5 MDL2є cycles and 
then in section B, the interpreter selects the new atom 
at an initial clock frequency (D7). AMOVE atom 
starts during 10 MDL2є cycles (Fig.4. C) The next 
process executed is the RUNION (Fig 4. D) and 
means that an atom is randomly selected with its 
programmed probability (lines 06-08 of Table 2). 
AROT_R atom is executed (Fig.4. E) during 5 
MDL2є cycles, and finally an AMOVE (line 04 on

 
Table 2.: MDL2є implementation of the bee inspired aggregation algorithm by T. Schmickel et al. 
 

00 <MDLeScript>     
01   <PLAN name="BeeAlg" duration="infinite"> 
02     <BEHAVIOUR name="collisionAvoidance" Interrupt="NOT(GEQ(VNROBOTS,1))"> 
03       <MULT multiplicity="infinite"> 
04      <ATOM name="AMOVE"  interrupt="NOT(ITOUCH)" duration="10"/>  
05      <RUNION> 
06         <ATOM name="AMOVE"  interrupt="NOT(ITOUCH)" duration="10" probability="18"/>  
07         <ATOM name="AROT_L" interrupt="ITRUE"       duration="5"  probability="1"/> 
08         <ATOM name="AROT_R" interrupt="ITRUE"       duration="5"  probability="1"/> 
09      </RUNION> 
10      <BEHAVIOUR name="avoid" interrupt="ITOUCH"> 
11         <ATOM name="AROT_L"  interrupt="AND(ITOUCH0,ITOUCH1)" duration="5"/> 
12         <ATOM name="AROT_R"  interrupt="AND(ITOUCH0,ITOUCH3)" duration="5"/> 
13         <ATOM name="ASTOP"   interrupt="ITRUE" duration="1"/> 
14      </BEHAVIOUR> 
15       </MULT> 
16     </BEHAVIOUR>  
17     <BEHAVIOUR name="measurement" interrupt="OR(ISEMAPHORE,GEQ(VNROBOTS,1))"> 
18       <ATOM name="ASETSEM"  duration="1" /> <!-- sets a semaphore --> 
19       <ATOM name="ASTOP"    interrupt="NOT(IMEASURE)" duration="40"/> 
20       <UNION> 
21         <ATOM name="ASEND" arg0="180" interrupt="GEQ(VXPOSL,180)" duration="180"/>  
22         <ATOM name="ASEND" arg0="120" interrupt="GEQ(VXPOSL,120)" duration="120"/>  
23         <ATOM name="ASEND" arg0="60"  interrupt="GEQ(VXPOSL,60)"  duration="60"/>  
24         <ATOM name="ASEND" arg0="30"  interrupt="GEQ(VXPOSL,30)"  duration="30"/>  
25       </UNION>      
26       <RUNION> 
27         <ATOM name="AMOVE"  interrupt="NOT(ITOUCH)" duration="10"  probability="1"/>  
28         <ATOM name="AROT_L" duration="5" probability="1"/> 
29         <ATOM name="AROT_R" duration="5" probability="1"/> 
30       </RUNION> 
31       <ATOM name="ARELSEM" duration="1" /> <!-- releases the semaphore --> 
32     </BEHAVIOUR>  
33   </PLAN> 
34 </MDLeScript> 
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Table 2) process is executed to select the next atom 
(Fig.4. F). 
 The duty time of the DW8051 induced a shift of the 
MDL2є pseudo clock, cf. Fig.4. This shift can be 
reduced by measuring the duty time, using the 
additional external timers, and respectively reducing 
the software timers and the sleep time. This strategy 
has been successfully applied. However, there is a 
trade-off, as the external timer interruption for 
counting the duty time runs at a minimal frequency of 
1.46kHz and handling those interrupts also induces a 
significant increase of the workload. This gets even 
worse when the main clock of the µC is decreased as 
it is interrupted more often in respect to the 
conducted work. The advantages or disadvantages of 
this approach have to be measured with the real robot 
as it is a matter of the consumed energy which 
strategy is the best. 
 

 
Fig.4. Collision avoidance behaviour with random 

motion (Table 2. line 2 – 16). 
  
 
9   Conclusion 
We presented the integration of software in a 
hardware platform designed for an autonomous 
microrobot forming part of a swarm. The specifically 
architecture designed for the hardware allows to 
simplify the software integration and to manage 
power efficiently. It has been shown how this can be 
achieved with simple examples. 
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