
Energy Aware HW/SW Integration in an Autonomous Microrobot

A. Sanuy1, R. Casanova1, M. Szymanski2, H. Wörn2, J. Samitier1, A. Dieguez1

1Department of Electronics. Sistemes d’Instrumentació i Control (SIC)
University of Barcelona, C/ Marti i Franques nº 1, Barcelona, Spain

2Institute for Process Control and Robotics(IPR)
Kaiser. 12, Universität Karlsruhe(TH), D-76128 Karlsruhe, Germany

Abstract: - This paper addresses the integration of HW and SW for a 3 mm x 3 mm x 3 mm autonomous
microrobot called I-SWARM. The robot is intended to be part of a swarm of up to 1000 members for studying
large scale swarm behaviour. The robot is the smallest autonomous robot of the world, equipped with a vibrating
contact sensor, a four directional infrared communication module, vibrating legs and an ASIC. It presents an
overall architecture of the robot and the SW used. The software is comprised of a hardware abstraction layer and
an interpreter for a specially designed control language.

Key-Words: - Micorobotic, Swarm, SoC , low power

1 Introduction
Swarm robotics is a new approach to the coordination
of multirobot systems which consist of large numbers
of relatively simple physical robots. The goal of these
systems is to execute tasks, which may be inherently
too complex or impossible for a single robot and
benefits can be gained from using multiple robots.
Those tasks are achieved by building and using
several simple and cheap robots than having a very
complex and powerful single robot. The requirements
for a robot in a swarm depend on the scenario to be
executed. The most basic scenarios require usually at
least locomotion and basic perception of the
environment. With these cooperative mobile robots
become an inherent approach in the social sciences
(organization theory, economics, cognitive
psychology), and life sciences (theoretical biology,
animal ethnology). The absence of a central control is
the most important fact in these systems and it calls
decentralized systems using terms as “emergence”
and “self-organization”. These terms in a swarm are
the ability to distribute itself “optimally” for a given
task exhibiting collectively intelligent behaviour with
non-intelligent robots. In collective robotics,
communication is crucial for coordinating behaviour
among robots. Communications among different
members of the swarm or a detailed analysis of the
environment enable more complex scenarios [1].

These single robots have limited capabilities.
Therefore, microrobots need to operate in very large
group or swarms to affect the macroworld. Simple
agents can be constructed/programmed to achieve

collective swarm tasks. These can send orders, share
information, change their current task/role if a
member of the system fails. They can even reprogram
another member of the collective if the robots are
provided with this ability [2].

I-SWARM [3] is an autonomous microrobot of 3 x

3 x 3 mm3 powered with solar cells. It has been
designed with the capability to move, communicate,
and sense in order to act as a member of a swarm of
other I-SWARM robots. Each agent senses its
environment and uses this information to take
decisions, execute different tasks or learn as shown in
Fig.1. Because of the small dimensions of the robot,
all the electronics have been integrated on the SoC.

Fig.1. Flow control of a swarm robot

The SW used in this robot is based on finite state

machine operating system (FSMO) JaMOS [4] that
senses the environment and acts depending on the
state and the role of the robot in the swarm.

This paper presents the integration process between

HW and SW to achieve that the I-SWARM robot

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 225

solves a specific scenario. This means, how the SW
uses and operates the HW provided by the robot. A
simple processor (the embedded 8051 and integrated
memories) is not able to control all the robot
components without exceeding the power
requirements. The I-SWARM robot is described in
section II. The overall architecture of the robot is
described in section III. Section IV describes the
integration between HW and SW. Section V
describes the SW language used. The control cycle of
the SW is described in section VI. The combination
between the SW and the HW modules is described in
section VII, and finally, the section VIII shows the
experiments realized.

2 I-SWARM Robot
I-SWARM robot has been conceived in order to
create a swarm of up to 1000 robots as well as to
provide a platform to run different swarm scenarios
and algorithms. Some of the scenarios are
aggregation, pattern forming and object recognition.

The electronics of an I-SWARM robot as well as

the actuators are mounted over a flexible printed
circuit board (FPCB). This FPCB is folded as a
sandwich and is mounted over the locomotion unit. It
has been fabricated by the Department of Materials
Science (DMS), Uppsala [5]. The three legs are bent
out of plane (45º). The VCS is mounted at the middle
of one side of the FPCB. The IR communication
system is an optoelectronic system composed of four
pairs of one photodiode and one LED placed at every
side of the robot and it has been fabricated by the
Scuola Superiore Sant Anna (SSSA), Italy [6].

Each I-Swarm robot is controlled by a SoC

designed specifically for this purpose. The power is
supplied by a group of solar cells mounted at the top
of the robot. The cells are not connected directly to
the electronics but to two tantalum capacitors that
store the energy. Two additional smaller solar cells,
SC1 and SC2, mounted in opposite sides of the robot
top surface are used to program the robots and to
provide the global positioning of the robot in the
arena (Fig 2) [7].

3 Overall Architecture
The collective behaviour of the swarm emerges
because each agent takes decisions as a function of
the data collected from its environment and his role
inside the robotic swarm. In an I-SWARM robot, the

decisions and the data processing are performed by
an 8051 microprocessor embedded on the SoC
provided of 8 kB of program memory that stored the
program code and 2 kB for data to store some values
and variables. The 8051 work in parallel with specific
hardware blocks dedicated to the control of each of
the robot functionalities (Fig.3). These are:

- Locomotion Control Unit (LCU) [8]
- Optoelectronic Control Unit (OCU) [9]
- VCS Control Unit (VCSCU) [10]
- Program Control Unit (PCU)

Fig.2. I-SWARM robot concept

The existence of these specific hardware modules

reduces the size of the BIOS because basic tasks as
forward movements or frame sending can be
implemented by hardware. The space not occupied by
the BIOS is used to load finite state machine
operating system (FSMOS).

The 8051 can adjust its working frequency

(Dynamic Frequency Scaling, DFS) as a function of
the workload in order to save power. However,
software needs the 8051 timers so it can not change
the working frequency. To avoid the non use of DFS
which is advantageous from the point of view of
power management, the SoC is provided with two
timers which run with the 12 MHz. With the
additional timers the 8051 can modify its frequency
and the timers still runs constantly at 12 MHz. These
two timers determine the control cycle of the SW
execution, as is explained in section 6.

The SoC has a Power Management Unit (PMU) to
save power in those cases that no computation has to
be performed. The PMU can stop the clock of the
processor. The clock can be activated again when one
of the controllers generates an interrupt. The way of
using the PMU in order to optimize the power
consumption of the SoC is running the 8051 at the
lowest frequency, 1.46 kHz, during periods of

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 226

inactivity or when one or more controllers are
performing a task. When any of these finishes, the
8051 has to take a decision and continue executing a
SW plan. If it is necessary, the 8051 can speed up this
process by incrementing its working frequency.
When it finishes, the clock can be set again at the
lowest frequency 1.46 kHz or even stopped until a
controller requires the 8051 services.

Fig.3. Overall architecture of the SoC

4 Integration between HW and SW
SW consists of two main layers. The hardware
abstraction layer (HAL) also called BIOS and an
interpreter. The interpreter itself consists of two
layers, one that connects the interpreter with the HAL
and another one that does the interpretation.

The HAL configures the HW and puts it in the
correct state. After configuring the hardware the
interpreter starts interpreting its program given in a
special language as a byte code. This language is the
extended Motion Language Two (MDL2є), and it is
explained at the next section. The decision to use an
interpreted language was guided by the fact, that
programming the robot via the beamer needs 45
minutes for 8kB. The interpreter enables us to load
programmes of 256 – 512 Bytes without touching the
HAL and the interpreter. This reduces the
programming time during different experiments by a
factor of up to 32.

5 Extended motion description
language two

5.1 Overview
The extended Motion Description Language Two
(MDL2є) is a high-level language for implementing
behaviour-based control programs for relative simple
robots. MDL2є is based on MDLe by Manikonda et
al. [11] but incorporates several improvements
leading from a control language driven by control
theory to a fully functional control language for
autonomous robots. MDL2є therefore aims on:

1. hiding low-level robot implementation details
from the user,

2. reducing code-size,
3. providing the user with a simple and easy to

use control language,
4. simple concept of integrating MDL2є in robot

simulation environments and different robotic
platforms.

5.2 Concept
MDL2є is conceptual similar to a regular expression.
MDL2є-programs are called plans and are usually
implemented in an xml-file. MDL2є provides the
user with an alphabet, which is a set of so called
atoms (ATOM), and a set of non-terminals or
MDL2є-operators that control the control flow.
Atoms let the robot interact with its environment or
change its internal state. Typical atoms for interacting
with the environment are AMOVE, which makes the
robot move forward, or ASEND, that sends a
message to other robots. An atom that changes the
internal state is for instance ASETROLE, which
changes the role of the robot for instance switching
from a worker to a soldier role showing different
behaviours.

The non-terminals are multiplicity (MULT), union
(UNION), random union (RUNION), behaviour
(BEHAVIOUR) and plan (PLAN). The multiplicity is
a looping operator that loops for a given time or
infinite. The union acts like a if-than-else-statement
which selects the first valid subnode stated in the xml
expression <UNION multiplicity=”5”> <subnode/> .
. .<subnode/> </UNION>. How a subnode can be
valid or invalid will be described later.

The random union randomly selects one of its
subnodes. Each subnode holds as attribute its own
probability value, which is used to calculate a simple
normalised probability distribution for the selection

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 227

process.
The behaviour operator is a simple bracket around

a set of arbitrary MDL2є operators and atoms.
However, behaviours and atoms are in some way
special. Their attributes include an interrupt and a
duration. The duration is a simple timer that states
how many MDL2є-cycles a behaviour or atom has to
be executed also infinite execution is possible. The
interrupts connect the behaviours and atoms to the
robot’s internal and external state. If the interrupt of
an atom or behaviour is true the atom and behaviour
will be called valid or active otherwise invalid or
inactive. If an atom or behaviour becomes invalid a
new valid atom will be selected from the plan.
Multiplicity, union and random union are considered
as always valid. To distinguish between those
interrupts and the hardware interrupts generated by
the ASIC. We will refer to those either as
MDL2є-interrupts or hardware interrupts. Finally is a
plan a special behaviour that has no interrupt just a
duration. The duration of a plan is usually set to
infinite a plan is the entry point for a MDL2є-
program and surrounds all other nodes.

A plan is an arbitrary combination of the latter
control flow operators and atoms. Valid operators and
atoms will be executed sequentially as long as no
control flow operator changes the flow of execution.

6 Mdl2є Control Cycle
The whole control process is embedded into the
MDL2є control cycle. This cycle usually consist of
the following three steps:

1. Check if the current behaviours or atom is

valid:
 yes: continue executing the current atom

 no: select the next valid atom from the plan
 and execute it.

2. Gather sensor information and update MDL2є-
interrupts.

3. Decrement the timers of the behaviours and
the atom.

In the I-SWARM-robot sensors do not have to be
polled for information. All actuators and sensors
inform the CPU by a hardware interrupt that they
entered a new state. For instance a message
arrived/was send or a motion has been finished. This
allows a very energy efficient integration of the
MDL2є control paradigm exploiting all the features
of the Power Management Unit (PMU). The
integration will be described in detail in the following
section.

7 Combining Mdl2є and the Power
Management Unit
The PMU enables the software engineer to power
down all sub modules of the ASIC independently.
This makes energy saving very convenient from the
MDL2є point of view. Acting modules like the
Motion Control Unit can be turned on by an atom
when needed and also turned of either in an interrupt
service routine (when motion has finished) or by
another atom. Switching of the Optical Control Unit
(OCU) or the vibrating needle makes no sense from
the robot’s point of view as it is the only sensor that
makes the robot aware of other robots or obstacles.
However, if energy is scarce those units can also be
turned off automatically by appropriate atoms. For
instance sending and receiving a message may not
possible while walking, than the AMOVE would also
turn off the OCU.

Significantly most of the energy is consumed when
the DW8051 μController accesses to the internal
memories. Here the PMU provides us with a very
important feature. The DW8051 can be set to a sleep
mode, by simply disconnecting it from the clock
signal, for a given time. Instead of using an external
timer for the MDL2є-duration of an atom or
behaviour the DW8051 can be set in sleep mode.
This significantly reduces the frequency of step one
of the execution cycle.

The DW8051 one can be awaken by all peripheral
hardware interrupts during the sleep mode and handle
them in the interrupt service routines (ISR). Some
hardware interrupts affect the MDL2є-interrupts.
Table 1 describes the pseudo-code of the
implemented loop the DW8051 is continuously send
to sleep mode, when it awakes it is checked if it has
been awaken by the sleep timer or any other interrupt.
If it was the sleep timer all software timers
(durations) are decremented and the controller is send
back to sleep mode. If any other interrupt occurred or
a software timer overflow occurred it is checked if
the current behaviours and the atom are still valid. If
not a new atom will be selected from the plan.

8 Experiments and Evaluation
Experiments have been performed to evaluate the
concept. The MDL2є-cyle duration has been set to
20ms. We selected 20ms as it corresponds with the
integration step time of our robot simulator. This
improves the transfer of plans written in the simulator

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 228

to the robot. However, the cycle time can be adapted
to reduce the power consumption.

As test scenario one of the final I-SWARM
scenarios has been selected. In this scenario the
robots have to collectively optimise a function given
by the environment. The algorithm is inspired by
honeybees and has bee developed by our partners
from Graz T. Schickel et al. The implementation of
the algorithm in MDL2є is given in Table 2.

Table 1. MDL2є cycle for the I-SWARM-robot.

01 while (true) {
02 select-valid-atom;
03 do {
04 clear-software-interrupts;
05 do {
06 PMU-send-DW8051-to-sleep;
07 if (waken-up-by-PMU-sleep-timer)
08 decrement-software-timers;
09 } while (no-new-message
10 AND no-collision
11 AND motion-not-finished
12 AND no-software-timer-overflow);
13 } while(no-MDL2e-interruption);
14 }

The algorithm it self is very simple. The robots

perform a random walk until they meet another robot.
Then they measure the value of the environmental
pattern and stop as a linear function of the measured
value. This leads to an aggregation in the spot with
the highest value.

The whole algorithm has been analysed regarding

the needed CPU time. The DW8051 ran with a fixed
clock of 6 MHz. The input to the ASIC had been
controlled via an RS232 connection by a specially
designed application. In this way it was possible to
have a look at the single parts of the plan.

Fig.4 exemplary shows what has been measured
during the test. Interesting for the HW and SW
integration using the PMU is the duty time of the
DW8051 during the interpretation of the MDL2є byte
code. The duty during the interpretation which
includes operant fetching, interrupt analysis and
including the execution of a newly found atom lay
between 10 and 40ms. The MDL2є-cyle for sending
the DW8051 back to sleep and reducing the software
timers took about 280us. In this picture we can see
the RUNION code part of the plan presented in Table
2. On the left side of this image, we can see the
AROT_L atom. This means the only one of the two
frontal legs are moving (D13 and D14 on Fig.4.).
This atom is executed during 5 MDL2є cycles and
then in section B, the interpreter selects the new atom
at an initial clock frequency (D7). AMOVE atom
starts during 10 MDL2є cycles (Fig.4. C) The next
process executed is the RUNION (Fig 4. D) and
means that an atom is randomly selected with its
programmed probability (lines 06-08 of Table 2).
AROT_R atom is executed (Fig.4. E) during 5
MDL2є cycles, and finally an AMOVE (line 04 on

Table 2.: MDL2є implementation of the bee inspired aggregation algorithm by T. Schmickel et al.

00 <MDLeScript>
01 <PLAN name="BeeAlg" duration="infinite">
02 <BEHAVIOUR name="collisionAvoidance" Interrupt="NOT(GEQ(VNROBOTS,1))">
03 <MULT multiplicity="infinite">
04 <ATOM name="AMOVE" interrupt="NOT(ITOUCH)" duration="10"/>
05 <RUNION>
06 <ATOM name="AMOVE" interrupt="NOT(ITOUCH)" duration="10" probability="18"/>
07 <ATOM name="AROT_L" interrupt="ITRUE" duration="5" probability="1"/>
08 <ATOM name="AROT_R" interrupt="ITRUE" duration="5" probability="1"/>
09 </RUNION>
10 <BEHAVIOUR name="avoid" interrupt="ITOUCH">
11 <ATOM name="AROT_L" interrupt="AND(ITOUCH0,ITOUCH1)" duration="5"/>
12 <ATOM name="AROT_R" interrupt="AND(ITOUCH0,ITOUCH3)" duration="5"/>
13 <ATOM name="ASTOP" interrupt="ITRUE" duration="1"/>
14 </BEHAVIOUR>
15 </MULT>
16 </BEHAVIOUR>
17 <BEHAVIOUR name="measurement" interrupt="OR(ISEMAPHORE,GEQ(VNROBOTS,1))">
18 <ATOM name="ASETSEM" duration="1" /> <!-- sets a semaphore -->
19 <ATOM name="ASTOP" interrupt="NOT(IMEASURE)" duration="40"/>
20 <UNION>
21 <ATOM name="ASEND" arg0="180" interrupt="GEQ(VXPOSL,180)" duration="180"/>
22 <ATOM name="ASEND" arg0="120" interrupt="GEQ(VXPOSL,120)" duration="120"/>
23 <ATOM name="ASEND" arg0="60" interrupt="GEQ(VXPOSL,60)" duration="60"/>
24 <ATOM name="ASEND" arg0="30" interrupt="GEQ(VXPOSL,30)" duration="30"/>
25 </UNION>
26 <RUNION>
27 <ATOM name="AMOVE" interrupt="NOT(ITOUCH)" duration="10" probability="1"/>
28 <ATOM name="AROT_L" duration="5" probability="1"/>
29 <ATOM name="AROT_R" duration="5" probability="1"/>
30 </RUNION>
31 <ATOM name="ARELSEM" duration="1" /> <!-- releases the semaphore -->
32 </BEHAVIOUR>
33 </PLAN>
34 </MDLeScript>

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 229

Table 2) process is executed to select the next atom
(Fig.4. F).
 The duty time of the DW8051 induced a shift of the
MDL2є pseudo clock, cf. Fig.4. This shift can be
reduced by measuring the duty time, using the
additional external timers, and respectively reducing
the software timers and the sleep time. This strategy
has been successfully applied. However, there is a
trade-off, as the external timer interruption for
counting the duty time runs at a minimal frequency of
1.46kHz and handling those interrupts also induces a
significant increase of the workload. This gets even
worse when the main clock of the µC is decreased as
it is interrupted more often in respect to the
conducted work. The advantages or disadvantages of
this approach have to be measured with the real robot
as it is a matter of the consumed energy which
strategy is the best.

Fig.4. Collision avoidance behaviour with random

motion (Table 2. line 2 – 16).

9 Conclusion
We presented the integration of software in a
hardware platform designed for an autonomous
microrobot forming part of a swarm. The specifically
architecture designed for the hardware allows to
simplify the software integration and to manage
power efficiently. It has been shown how this can be
achieved with simple examples.

References:
[1] Y. Uny Cao, Alex S. Fukunaga, Andrew B.

Kahing, “Cooperative Mobile Robotics:
Antecedents and Directions”, Int. Conf. on
Intelligent Robots and Systems 95, Pittsburgh,
August 5-9, 1995, pages 226-234 vol.1.

[2] Menciassi A, Seyfried J, Crailsheim K, Corradi
P, Dario P, Valdastri P, Schmickl T,
“Micromanipulation, communication and swarm
intelligence issues in a swarm microrobotic
platform”, Robotics and Autonomous Systems,
789—804, vol 54. 2006

[3] http://www.i-swarm.org/
[4] M. Szymanski, and H. Wörn “JaMOS – A

MDL2e based Operating System for Swarm
Micro Robotics”, IEEE Swarm Intelligence
Symposium, May 2007, Honolulu, USA, pages
324–331.

[5] N. Snis, E. Edqvist, U. Simu, S. Johansson,
“Multilayered P(VDFTrFE) Actuators for
Swarming Robots”, Actuators 2006, 10th
International Conference on New Actuators, 14 –
16 June 2006, Bremen, Germany, pages 390–
393.

[6] P. Corradi, O. Scholz, T. Knoll, A. Menciassi, P.
Dario, "Micro-Optical system for
Communication and Perception in Swarm
Microrobotics", unpublished, to be submitted to
Institute of Physics Journal of Micromechanics
and Microengineering.

[7] Boletis, A. Brunete, W. Driesen, and J.-M.
Breguet. “Solar Cell Powering with Integrated
Global Positioning System for mm3 Size
Robots”, IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2006), Bejing,
October 9-15, 2006, pages 5528-5533, 2006.

[8] R. Casanova, A. Sanuy, A. Dieguez, J. Samitier,
“Addressing the locomotion problem on a mm3-
sized robot equipped withPVDM legs”, to be
publihed to XXII Conference on Design of
circuits and Integrated Systems (DCIS), Sevilla,
Spain, 2007.

[9] O. Alonso, A. Dieguez, R. Casanova, A. Sanuy,
O. Scholz, P. Corradi, J. Samitier, “An Optical
Interface for Inter-Robot Communication in a
Swarm of Microrobots”, Fisrt International
Conference on Robot Communication and
Coordination (ROBOCOM), Athens, Greece,
2007.

[10] A. Arbat, J. Canals, R. Casanova, A.
Dieguez, J. Brufau, M Puig and J. Samitier,
“Design and control of a Micro-cantilever tool
for micro-robot contact sensign”, European
Conference on Circuits Theory and Design, Aug.
2007, pp 100-103.

[11] Manikonda, Krishnaprasad, and Hendler.
Languages, Behaviors, Hybrid Architec-tures,
and Motion Control. Mathematical Control
Theory, 1998. C. J. Kaufman, Rocky Mountain
Research Lab., Boulder, CO, private
communication, May 1995.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 230

