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Abstract: In this article we demonstrate that the collocation methods are stable in according with the small per-
turbations of coefficients, kernels and right part of studied equations. We prove that the condition number of the
approximate operator exist and bounded( for the numbersn large enough). This condition number of collocation
methods is appropriated with condition number for exact singular integro- differential equations equations (SIDE).
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1 Introduction

The main results about of the stability of projection
methods were obtained in S. G. Mihlin [1], [2] and
G.M. Vainikko [3] for Hilbert spaces and B.G. Gab-
dulhaev [4] for Banach spaces.

The definition of condition number for system of
linear algebraic equations was introduced for example
in [5],[6], [7] and generalized for operators and oper-
ator equations in [4].

The convergence for collocation methods was
proved in [14], [8]. Numerical results were obtained
in [13].

2 The main definitions notations

In this section we introduce the main definitions from
[4],[7], [6]. Let

Ax = y, (x ∈ X, y ∈ Y, (1)

be an exact equation and

Anxn = yn, (xn ∈ Xn, yn ∈ Yn), (2)

be an approximative equation.
Let A andAn be a linear operators which acting

from Banach spaceX to the Banach spaceY and from
subspaceXn ⊂ X to the subspaceYn ⊂ Y.

In practice the approximative solution of equation
(2) is solved approximative because of the elements

of this equations are not defined exactly. It means that
the equation (2) is changed by new one

Bnxn = zn (xn ∈ Xn, zn ∈ Yn), (3)

whereBn is linear operator fromXn to Yn and soAn

andBn, asyn andzn are appropriated in some sense.
That is why we should study the stability of direct

methods1 for the solution of equation (1). So we study
the error

δn = ||x(∗)
n − x(1)

n ||, (4)

wherex(∗)
n andx(1)

n are solutions ( if the solutions ex-
ist) of equations (2) and (3), respectively.

We introduce the definition of condition number
defined by operator.

The valueη = η(A) = ||A||||A−1|| is named the
condition number of operatorA and equation (1).

The operatorA and the equation (1) are named
well-conditioned ifη is small, and ill-conditioned in
another case.

The following equality was obtained in [7] :

η(A) = sup
x∗

{
sup

y

||x∗ − x∗n||
||x∗|| :

||A(x∗ − x∗n)||
||y||

}
, (5)

wherex∗, x∗n are solutions of equations (1) and (2)
andy is right part in (1).

1The collocation methods, mechanical quadrature- methods
are direct methods.
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We study the stability of collocation methods. We
suppose that the operatorA in (1) are invertible.

The following theorems holds: [8]
Theorem 1. Let the following conditions be

satisfied

1) dimXn = dimYn (= m(n) < ∞) and Yn =
QnY, whereQn is bounded projector for alln;

2) the operatorsAn : Xn → Yn are invertible and
||A−1

n ||Yn→Xn ≤ c1 (<∞);

3) ||An −Bn||Xn→Yn = O(ε(1)
n );

4) ||yn − zn|| = O(ε(2)
n ); yn, zn ∈ Yn;

5) lim
n→∞ ε

(1)
n = lim

n→∞ ||Qn||ε(1)
n = lim

n→∞ ε
(2)
n = 0.

Then for numbersn large enough(n ≥ N0) the
operatorsBn : Xn → Yn are invertible and

a) ||B−1
n ||Yn→Xn ≤ c2 (<∞);

b) lim
n→∞ δn = 0, δn = ||x∗n − x

(1)
n ||, and δn ≤

c3||Qn||Y ε(1)
n + c4ε

(2)
m ;

c) ||x∗ − x(1)
n ||X ≤ ||x∗ − x∗n||+ ||Qn||YO(ε(1)

n ) +
O(ε(2)

n ).

Theorem 1. determines the stability of methods
in case when the projectorsQn are bounded for alln
and the following relation is true for these projectors.
lim

n→∞ ||Qn||ε(1)
n = 0. The correlation between the

condition numbers of approximative and exact solu-
tions are given in the following theorem.

Theorem 2. Let the operatorsA and An

are linear and invertible as operators acting from
X to Y and fromXn to Yn respectively where
dimYn (< ∞). Let

||A− An||Xn→Y = O(εn); lim
n→∞ εn = 0, (6)

then the condition numbersη(A) and η(An) of
operatorsA and An exist. The following rela-
tions hold:

η(An) ≤ cηA, 1 ≤ c ≤ 1 + ε

1− ε

for n ≥ N3(ε), (7)

whereε is is an arbitrary positive less the unity
and

lim
n→∞ η(An) = η(A). (8)

So if the exact solutions of equation (1) are well
conditioned then from the conditions of theorem
2. the approximative solution of (2) are also well
conditioned

3 Numerical schemes of the colloca-
tion methods

The numerical schemes of collocation methods for
the approximate solution of SIDE are presented in
this section. The theorem of the convergence of
the approximate solutions to the exact solution are
formulated.[8], [14].

Let Un be the Lagrange interpolating polynomial
operator constructed on the points{tj}2n

j=0 (n is a nat-
ural number ) for any continuous function onΓ

(Ung)(t) =
2n∑

j=0

g(tj) · lj(t), t ∈ Γ,

where

lj(t) =
(
tj
t

)n 2n∏

(k=0,k 6=j)

t− tk
tj − tk

≡

≡
n∑

k=−n

Λ(j)
k tk, t ∈ Γ. (9)

ByHβ(Γ) we denote Ḧolder space with the expo-
nentβ (0 < β < 1) and with norm

‖g‖β = ‖g‖C +H(g;β),

H(g, β) = sup
t′ 6=t′′

∣∣∣g(t′′)− g(t
′
)
∣∣∣

|t′ − t′′ |β
, t
′
, t
′′ ∈ Γ.

By H(q)
β (Γ) q = 0, 1, . . . , we denote the space

of r times continuously- differentiable functions. The
derivatives of theq-th order for these functions are el-
ements ofHβ(Γ) ( g(q) ∈ Hβ(Γ).)

The norm onH(q)
β (Γ) is given by formula

||g||β,q =
q∑

k=0

||g(k)||c +H(g(q);β). (10)

In the complex spaceHβ(Γ) we consider the
SIDE

(Mx ≡)
ν∑

r=0

[Ãr(t)x(r)(t) + B̃r(t)
1
πi

∫

Γ

x(r)(τ)
τ − t

dτ +

+
1

2πi

∫

Γ

Kr(t, τ)x(r)(τ)dτ ] = f(t), t ∈ Γ, (11)

whereÃr(t), B̃r(t), hr(t, τ)(r = 0, ν) andf(t) are
known functions which belong toHβ(Γ), x(0)(t) =
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x(t) is the unknown function fromHβ(Γ), and

x(r)(t) =
drx

dtr
, r = 1, ν, ν is positive integer.

We assume that the functionx(ν)(t) belongs to
Hβ(Γ), then

x(k)(t) ∈ Hβ(Γ), k = 0, ν − 1.

We search for a solution of equation (11) in the
class of functions, satisfying the condition

∫

Γ

x(τ)τ−k−1dτ = 0, k = 0, ν − 1. (12)

Equation (11) with conditions (12) will be de-
noted as ”problem (11), (12) ”

We search for the approximate solutions of prob-
lem (11), (12) in the polynomial form

xn(t) =
n∑

k=0

α
(n)
k tk+ν +

−1∑

k=−n

α
(n)
k tk, t ∈ Γ, (13)

whereα(n)
k = αk (k = −n, n) are unknowns; we note

that the functionxn(t), constructed by formula (13),
obviously, satisfies the conditions (12).

According to the collocation methods, we deter-
mine unknownsαk k = −n, n from the condition

(Mxn)(tj)− f(tj) = 0, (14)

in 2n+ 1 different pointstj ∈ Γ, j = 0, 2n.
As a result we will obtain a system of linear alge-

braic equations (SLAE):

n∑

k=−n

ν∑

r=0

{
(k + ν)!

(k + ν − r)!
· sign(k)[Ar(tj)tk+ν−r

j

+
∫

Γ

hr(tj , τ) · τk+ν−rdτ ]+

+
(k + r − 1)!

(k − 1)!
sign(−k) · [(−1)rBr(tj)t−k−r

j +

+
∫

Γ

Kr(tj , τ)τ−k−rdτ ]
}
αk = f(tj), j = 0, 2n,

(15)
whereAr(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) −
B̃r(t),r = 0, ν, sign(k) = 1,k ≥ 0, sign(k) =
−1,k < 0.

Let
o
H

(ν)

β (Γ) is a subspace ofH(ν)
β (Γ) space. The

elements of
o
H

(ν)

β (Γ) are satisfied the condition (12)
with the norm as inHβ(Γ).
Theorem 3. LetΓ ∈ Λ and the following conditions
are satisfied:

1. the functionsÃr(t), B̃r(t),Kr(t, τ), (r = 0, ν)
andf(t) belong to the spaceH(r)

α (Γ); 0 < α <
1, r ≥ 0;

2. Aν(t) ·Bν(t) 6= 0,t ∈ Γ;

3. the index of functiontνB−1
ν (t)Aν(t) is equal to

zero;

4. the operatorV :
o
H

(ν)

β (Γ) → Hβ(Γ) is linear
and invertible;

5. the pointstj(j = 0, 2n) form a system of Fejér
points [11], [12] onΓ:

tj = ψ

[
exp

(
2πi

2n+ 1
(j − n)

)]
, j = 0, 2n;

6. 0 < β < α < 1.

Then, beginning withn ≥ n1, SLAE (15) has the
unique solutionαk, k = −n, n. The approximate so-
lution xn(t), constructed by formula (13,) converges
whenn → ∞ in according to the norm of space
Hβ(Γ) to the exact solutionx(t) of the problem (11),
(12). The following estimation of convergence speed
holds:

||x− xn||β,ν =
d1 + d2 lnn
nr+α−β

H(x(r), α).

4 Stability of collocation methods.
Condition numbers

Theorem 4. In conditions of the theorem 3 the collo-
cation methods for the approximate solution of SIDE
(11) is stable in Ḧolder spaces from different of small
variations in approximative equations.

Proof of theorem. From the demonstration of
the theorem 3 we obtained that approximative collo-
cation operatorAn starting from the numbersn ≥ n1,

is invertible as operator acting from
o
Xn toXn, where

Xn and
o
Xn are defined in [14], [8]

||A−1
n || = O(1), An :

o
Xn→ Xn.

From proof of theorem 3 we have that the oper-
atorsUn is bounded inHβ andXn = UnHβ. Us-

ing the theorem 1. in conditionsA = M, Xn =
o
Xn,

Yn = UnHβ;Qn = Un, ε
(1)
n = ε

(2)
n =

lnn
nα−β

,we have

the collocation operatorAn. Theorem 4. is proved
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Theorem 5. Let the conditions of theorem
3. be satisfied. Then beginning with the num-
ber n ≥ N1 exist a condition numbersη(An) for
approximative equations of collocation methods

andη(An) ≤ c · η(M), 1 ≤ c ≤ 1 + ε

1− ε
, ε(> 0) is

an arbitrary small numbern ≥ N1(ε) :

lim
n→∞(An) = η(M).

From theorem 3 we have,

||An −M ||Xn = const
lnn
nα−β

.

The conditions (6) of the theorem 2 Now the the-
orem 5. followed by from the relations (7) and (8).

5 Stability of exact SIDE

In this section we study the stability of SIDE exacts in
Hölder spacesHβ(Γ), Γ ∈ Λ.

Using the Riesz operators we rewrite the SIDE
(11) in the form:

(Mx ≡)
ν∑

s=0

As(t)(Px(s))(t) +Bs(t)(Qx(s))(t)+

+
1

2πi

∫

Γ

Ks(t, τ)x(s)(τ)dτ = f(t), t ∈ Γ, (16)

whereP = 1
2(I + S); Q = I − S; I identic operator

andS is an singular operator.
We consider the SIDE (16) as exact equation.
We suppose that equation (16) has an unique solu-

tion. The coefficients, nuclei and right part have small
perturbations.

||As − Âs||c < ε, ||Bs − B̂s||c < ε,

||f − f̂ ||c < ε, ||Ks(t, τ)− K̂s(t, ε)||c < ε,

(t, τ ∈ Γ, ε < 1), s = 0, . . . ν. (17)

The following question appears: if the unique solution
xε(t) exists for equation

(M1x ≡)
ν∑

s=0

Âs(t)(Px(s))(t) + B̂s(t)(Qx(s))(t)+

+
1

2πi

∫

Γ

K̂s(t, τ)x(s)(τ)dτ = f̂(t), t ∈ Γ, (18)

if yes we should study the errorδ(1)
n = ||x∗(t) −

xε(t)||, wherex∗(t) is an unique solution for equation
(16) andxε(t) is an unique solution for (18)?

Suppose As(t), Bs(t), f(t) and Ks(t, τ)
∈ Hr

α(Γ), r = 0, 1, 2, . . . , s = 0, . . . ν (by
both variables).

As It was proved in [9], for smallε the coefficients
Âs(t), B̂s(t) şi K̂s(t, τ), s = 0, . . . ν, belong to the
Hr

α(Γ), r = 0, 1, 2, . . . , s = 0, . . . ν.
We estimate the function norm∆Mx,

∆Mx
df
= (M −M1)x,

in Hβ(Γ) (0 < β < α) :

∆Mx =
ν∑

s=0

{[As(t)− Âs(t)](Px(s))(t)+

[Bs(t)− B̂s(t)](Qx(s))(t)+

1
2πi

∫

Γ

[Ks(t, τ)− K̂s(t, τ)]x(s)(τ)dτ}, t ∈ Γ. (19)

It is enough to estimate ||∆Mx||c and
H(∆Mx;β).

a) |∆Mx|(t)| :

|∆Mx)(t)| ≤
ν∑

s=0

|[As(t)− Âs(t)](Px(s))(t)|+

ν∑

s=0

|[Bs(t)− B̂s(t)](Px(s))(t)|+

+
1

2πi

ν∑

s=0

{
∫

Γ

|Ks(t, τ)− K̂s(t, τ)|

|x(τ)||dτ |} = M1 +M2 +M3.

Taking into consideration that the operatorsP,
Q is bounded in Ḧolder spaces,(17) and evident
equality||·||c ≤ ||·||β forM1 andM2,we obtain.

M1 ≤
ν∑

s=0

{|As(t)− Âs(t)||(Px(s))(t)|} ≤

ε
ν∑

s=0

||Px(s)||β ≤ ε||P ||β||x||β,ν ;

M2 ≤
ν∑

s=0

{|Bs(t)− B̂s(t)||(Qx(s))(t)|}
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≤ ε
ν∑

s=0

||Qx(s)||β ≤ ε||Q||β||x||β,ν .

Analog, using (17), we obtainM3 ≤ l

2π
ε||x||c,ν

≤ l

2π
ε||x||β,ν (wherel is length of contourΓ).

So,

|(∆Mx)(t)| ≤ ε(||P ||β + ||Q||β +
l

2π
)||x||β,ν .

(20)

b) H(∆Mx;β). Let t
′
andt

′′ ∈ Γ. Then

|(∆Mx)(t
′
)− (∆Mx)(t

′′
)| ≤

ν∑

s=0

|[As(t
′
)− Âs(t

′
)](Px(s))(t

′
)−

−[As(t
′′
)− Âs(t

′′
)](Px(s))(t

′′
)|+

ν∑

s=0

|[Bs(t
′
)− B̂s(t

′
)](Qx(s))(t

′
)−

−[Bs(t
′′
)− B̂s(t

′′
)](Qx(s))(t

′′
)|+

ν∑

s=0

1
2πi

∫

Γ

|[Ks(t
′
, τ)− K̂s(t

′
, τ)]−

−[Ks(t
′′
, τ)−K̂s(t

′′
, τ)]|x(s)(τ)||dτ | = M4+M5+M6.

We estimateM4 andM5.
Let |t′ − t

′′ | ≥ ε. Then from (17) we have

M4 ≤
ν∑

s=0

{|[As(t
′
)− Âs(t

′
)]|(Px(s))(t

′
)|+

+|As(t
′′
)− Âs(t

′′
)||(Px(s))(t

′′
)|} ≤

≤ 2ε
ν∑

s=0

||Px(s)||β ≤

2ε1−βεβ||P ||β||x||β,ν ≤
2ε1−β||P ||β||x||β,ν |t′ − t

′′ |β.
If |t′ − t

′′ | < ε, then

M4 ≤
ν∑

s=0

|[As(t
′
)− Âs(t

′
)][(Px(s))(t

′
)−

(Px(s))(t
′′
)]|+

+
ν∑

s=0

|(Px(s))(t
′′
)[As(t

′
)− Âs(t

′
)−

Â(t
′′
) + Âs(t

′′
)]| ≤

≤ ε
ν∑

s=0

H(Px(s);β) +
ν∑

s=0

||Px(s)||c[H(As;α)+

H(Âs, α)]|t′ − t
′′ |α ≤ ε||P ||β||x||β,ν+

||P ||β||x||β,ν [H(As;α) +H(Âs;α)]|t′ − t
′′ |βεα−β.

The analog estimations are true forM5 changing
||P || by ||Q|| and functionsAs(t), Âs(t) byBs(t) and
B̂s(t), s = 0, ν. So in both cases

ν∑

s=0

|[As(t
′
)− Âs(t

′
)](Px(s))(t

′
)−

|t′ − t′′ |β

[As(t
′′
)− Âs(t

′′
)](Px(s))(t

′′
)|

|t′ − t′′ |β ≤ c1ε
δ||x||β,ν ,

ν∑

s=0

|[Bs(t
′
)− B̂s(t

′
)](Qx(s))(t

′
)

|t′ − t′′ |β −

[Bs(t
′′
)− B̂s(t

′′
)](Qx(s))(t

′′
)|

|t′ − t′′ |β ≤ c2ε
δ||x||β,ν ,

(21)

where
δ = min(β;α− β). (22)

ForM6, in similar way we will consider the case
|t′ − t

′′ | ≥ ε. Then

M6 ≤
ν∑

s=0

{ 1
2πi

∫

Γ

|Ks(t
′
, τ)−

K̂s(t
′
, τ)||x(s)(τ)|}|dτ |+

+
1

2πi

ν∑

s=0

{
∫

Γ

|Ks(t
′′
, τ)−

−K̂s(t
′′
, τ)||x(s)(τ)||dτ |} ≤

≤ ε

π
||x||c,ν l ≤ ε1−β

π
l||x||β,ν |t′ − t

′′ |β.

We used the fact that for functionsKs(t, τ) and
K̂s(t, τ) the relation (17) holds.

If |t′ − t
′′ | < ε, then

M6 ≤ 1
2πi

ν∑

s=0

∫

Γ

|Ks(t
′
, τ)−

Ks(t
′′
, τ)||x(s)(τ)||dτ |+
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+
1

2πi

ν∑

s=0

∫

Γ

|K̂s(t
′
, τ)−

K̂s(t
′′
, τ)||x(s)(τ)||dτ | ≤

≤ 1
2πi

ν∑

s=0

{||x(s)||(H(Ks;α)+

+H(K̂s;α))}|t′ − t
′′ |α ≤

1
2πi

||x||c,νεα−β
ν∑

s=0

(H(Ks;α)+

+H(K̂s;α))|t′ − t
′′ |β.

From estimations ofM6, from (18) and (22) we obtain

||∆M ||
H

(l)
β

(Γ)
≤ c · εδ; δ = min(β;α− β). (23)

From relation (23) we have forε enough small the
equation (18) has unique solutionx∗ε(t).

Using the theory of operator perturbation ([10])
and the relations (23) we can determine the relations
between exact solutionsx∗(t) andxε(t) of equations
(16) and (18) in spacesHβ(Γ)

Taking into consideration the definition of norm
in Hölder spaces we obtain

||x∗ − x∗ε||β = O(εδ);
Remark The same results we can obtain for

Lebesgue and Generalized Hödler spaces.

Acknowledgements: The research of first author
was partially supported by the Research Council
K.U.Leuven, project OT/05/40 (Large rank struc-
tured matrix computations), CoE EF/05/006 Op-
timization in Engineering (OPTEC), by the Fund
for Scientific Research–Flanders (Belgium), Itera-
tive methods in numerical Linear Algebra), G.0455.0
(RHPH: Riemann-Hilbert problems, random matrices
and Pad́e-Hermite approximation), G.0423.05 (RAM:
Rational modelling: optimal conditioning and sta-
ble algorithms), and by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Sci-
ence Policy Office, Belgian Network DYSCO (Dy-
namical Systems, Control, and Optimization).

References:

[1] Mihlin, S. G. Numerical realization of vari-
ational methods. With an appendix by T. N.
Smirnova Izdat. “Nauka”, Moscow 1966 432
pp. (In Russian)

[2] Mikhlin, S. G. Variational methods in math-
ematical physics Second edition, revised and
augmented. Izdat. “Nauka”, Moscow, 1970.
512 pp. (In Russian)

[3] Vainikko, G. M. On convergence and stability
of the collocation method. Differencialye Urav-
nenija 1 1965 244–254. (In Russian)

[4] B. G. Gabdulhaev, Optimal solution approxi-
mations of linear problems. Kazani, 1980. (In
Russian)

[5] Bahvalov N.S. Numerical Methods. V.1,
Moscow, 1975 (In Russian)

[6] Fadeev D.K., Fadeeva V.N., Numerical meth-
ods in linear algebra. Moscow, 1963. (In Rus-
sian)

[7] Krylov V.I., Bobkov V.V., Monastiriskii P.I.,
Numerical methods.; V. 1., Moscow, Science,
1976.

[8] Zolotarevski V. Finite-dimensional methods for
solving singular integral equations on arbitrary
smooth closed contours. ”Shtiintsa.” Kishinev,
136 p.(1991) (in Russian, ISBN 5-376-01000-
7)

[9] Ivanov V.V. The theory of approximate meth-
ods and their application to the numerical solu-
tion of singular integral equations, 330 p. No-
ordhoff, The Netherlands.

[10] Krasnoseliskii M.A., Vanikko G.M., Zabreiko
P.P., Approximate solution of operator equa-
tions] Izdat. “Nauka”, Moscow 1969 455 pp.
(In Russian)

[11] Smirnov V., Lebedev N Functions of a complex
variable constructive theory. MIT, Cambridge,
MA 1968.

[12] Novati P., A method based on Fejér points for
the computation of functions of nonsymmetric
matrices, Applied Numerical Mathematics, 44
(2003), pp. 201-224

[13] Iurie Caraus, Nikos E. Mastorakis, The test ex-
amples for Approximate Solution of singular
Integro- Differential Equations by Mechanical
Quadrature methods in classical Holder spaces.
Proceedings of the 2nd IASME/WSEAS Inter-
national Conference on Energy and Environ-
ment Protorose, Slovenia, Studies in Mechan-
ics, Environment and Geoscience. pp.90-95.

[14] Iurie Caraus, Nikos E. Mastoraskis, The Nu-
merical Solution for Singular Integro- Differ-
ential Equation in Generalized Holder Spaces,
WSEAS TRANSACTIONS ON MATHEMAT-
ICS, Issue 5, V. 5, May 2006, pp. 439-444,
ISSN 1109-2769.

3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 2007           78


