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Abstract: In this article we demonstrate that the collocation methods are stable in according with the small per-
turbations of coefficients, kernels and right part of studied equations. We prove that the condition number of the
approximate operator exist and bounded( for the numbéasge enough). This condition number of collocation

methods is appropriated with condition number for exact singular integro- differential equations equations (SIDE).
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1 Introduction

The main results about of the stability of projection
methods were obtained in S. G. Mihlin [1], [2] and
G.M. Vainikko [3] for Hilbert spaces and B.G. Gab-
dulhaev [4] for Banach spaces.

The definition of condition number for system of
linear algebraic equations was introduced for example
in [5],[6], [7] and generalized for operators and oper-
ator equations in [4].

The convergence for collocation methods was
proved in [14], [8]. Numerical results were obtained
in[13].

2 The main definitions notations

In this section we introduce the main definitions from
[4].[7], [6]. Let

Az =y, (z€ X,y €Y, 1)
be an exact equation and
Apzy, = Yn, (xn € Xn,yn € Yn)a (2)

be an approximative equation.

Let A and A,, be a linear operators which acting
from Banach spac# to the Banach spadé and from
subspaceX,, C X to the subspack, C Y.

In practice the approximative solution of equation
(2) is solved approximative because of the elements

of this equations are not defined exactly. It means that
the equation (2) is changed by new one
ann = Zn (xn € Xn7 Zn € Yn)7 (3)
whereDB,, is linear operator fronk,, toY,, and soA,,
andB,,, asy,, andz, are appropriated in some sense.
That is why we should study the stability of direct
methods for the solution of equation (1). So we study
by = [ — ],

the error
n (4)
(*) (1)

wherez;,’ andz,,’ are solutions ( if the solutions ex-
ist) of equations (2) and (3), respectively.

We introduce the definition of condition number
defined by operator.

The valuen = n(A) = ||A]|||A~}|| is named the
condition number of operatot and equation (1).

The operatord and the equation (1) are named
well-conditioned ifny is small, and ill-conditioned in
another case.

The following equality was obtained in [7] :

* *
{Supua: wall

AP
A@* — 22|
Il } ®)

wherez*, z;, are solutions of equations (1) and (2)
andy is right part in (1).

1(A) = sup

x*

The collocation methods, mechanical quadrature- methods
are direct methods.
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We study the stability of collocation methods. We
suppose that the operatdrin (1) are invertible.

The following theorems holds: [8]

Theorem 1. Let the following conditions be
satisfied

1) dimX,, = dimY, (= m(n) < oo0) andy,, =
Q.Y, where@,, is bounded projector for alh;

2) the operatorsd,, : X,, — Y,, are invertible and
1Ay, —x, < e (< 00);

3) ||4n — Bullxu—v, = O(eW));

) |y = zall = O(2); Yy 20 € Yos
1 _

5) lim &,’ = lim HQnHES) = lim 5%2) =0.
n—oo n—oo n—oo
Then for numbers large enough(n > Ny) the
operatorsB,, : X,, — Y, are invertible and
a) [|B; ! lyvu—x, < c2 (< 00);
b) lim 6, = 0, 6, = ||z} — x£1)|
n—oo

)+ C4€$2);

, andd, <

1
cs]|@nlly el

0) llo* = fllx < [l2* = 25|+ [|Qully O(e)) +
0(=?).
Theorem 1. determines the stability of methods

in case when the projecto€g,, are bounded for alh
and the following relation is true for these projectors.

HIL%O!\QTL!\S%I) = 0. The correlation between the
condition numbers of approximative and exact solu-
tions are given in the following theorem.

Theorem 2. Let the operatorsA and A,
are linear and invertible as operators acting from
X to Y and from X, to Y,, respectively where
dimY, (< 00). Let

JA = Adllx,—y = O(z,);  lim £, =0, ()

then the condition numberg A) and n(A4,,) of
operatorsA and A,, exist. The following rela-
tions hold:

n(An) S Cna, 1 S ¢ <

forn > Ns(e), (7)

wheree is is an arbitrary positive less the unity
and

lim n(A4,) = n(A). (8)

So if the exact solutions of equation (1) are well

conditioned then from the conditions of theorem
2. the approximative solution of (2) are also well
conditioned

3 Numerical schemes of the colloca-
tion methods

The numerical schemes of collocation methods for
the approximate solution of SIDE are presented in
this section. The theorem of the convergence of
the approximate solutions to the exact solution are
formulated.[8], [14].

Let U,, be the Lagrange interpolating polynomial
operator constructed on the poir{t@}fio (nis anat-
ural number ) for any continuous function on

2n

(Un )(t):Zg(tj)'lj(t>, tel,

j=0
where
2n
£\ t— 1ty
zj(t):<tﬂ) %=
(k=0,k£5) F ¥
= 3 AV ter. (9)
k=—n

By Hp(I') we denote lder space with the expo-
nents (0 < # < 1) and with norm

l9lls = llgllc + H(g; ),

1

g(t") = g(t)
H(g, ) = SUP‘,,,ﬁ
t/#t” ‘t —t |

’ "

.t el.

By H[(f) (') ¢ = 0,1,..., we denote the space
of r times continuously- differentiable functions. The
derivatives of the-th order for these functions are el-
ements offf3(T) (g9 € Hp(T).)

The norm oan’)(F) is given by formula

q
lglls. = > llg™lle + H(g';6).  (10)
k=0

In the complex spacdiz(I') we consider the
SIDE

o) S U000 + By L [ 2D
W _);)[Ar(t) (t)+Br(t)7ﬂ,r T—t dr +
+21M/Kr(t,7')fl‘(7")(7')d7'] :f(t),t c F’ (11)
I

where A,.(t), B,(t), h.(t,7)(r = 0,v) and f(t) are
known functions which belong té75(T'), 2 (t) =
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x(t) is the unknown function fromHg(I"), and

(M (t) = d'x

datr’

We assume that the functiorf*) (t) belongs to
Hg(T'), then

, v = 1, v, vis positive integer.

e®)(t) € Hy(T), k=0,v—1.

We search for a solution of equation (11) in the
class of functions, satisfying the condition

/IE(’T)T_k_ldT =0, k=0,vr—1
r

(12)

Equation (11) with conditions (12) will be de-
noted as "problem (11), (12) "

We search for the approximate solutions of prob-
lem (11), (12) in the polynomial form

Za Jphtv Z alM,

k=—n

tel, (13)

Wherea,g”) = ay (k = —n, n) are unknowns; we note

that the functionz,,(¢), constructed by formula (13),
obviously, satisfies the conditions (12).

According to the collocation methods, we deter-
mine unknownsy; £ = —n, n from the condition

(Man)(t;) — f(t;) =0,
in 2n 4 1 different pointst; € I', 5 = 0, 2n.
As a result we will obtain a system of linear alge-
braic equations (SLAE):

(14)

v

>y

k=—nr=0

(k+v)!

el Npktrv—r
by (k) 4,11

+ /hr(tj,T) . Tk+”_"d7]+

(15)
where A, (t) = A.(t) + B,(t), B:(t) = A(t) —
B.(t),r = 0,v, signk) = 1,k > 0, signk) =

o (V)
LetH; (I')isasubspace dﬂg’) (T") space. The

elements of]O{; ) (T") are satisfied the condition (12)
with the norm as iHg(I").

Theorem 3. LetI" € A and the following conditions
are satisfied:

=

. the functionsA, (t), B,(t),K,(t,7), (r = 0,v)
and f(t) belong to the spacHC(f) Tho<a<
1,r>0;

2. A,(t) - B,(t) £ 0t €T}

3. the index of function” B,
zero;

(t)A,(t) is equal to

o (V) .
4. the operatorV’ :Hz; (I') — Hpg(I') is linear

and invertible;

5. the pointst;(j = 0,2n) form a system of Fej
points [11], [12] onT":

27
2n+1

ta:l/}{exp( (j—n)ﬂ,j:&?n;

6.0<f<ax<l.

Then, beginning witm > n;, SLAE (15) has the
unique solutiony, &k = —n, n. The approximate so-
lution x,,(t), constructed by formula (13,) converges
whenn — oo in according to the norm of space
Hp(I') to the exact solutior(¢) of the problem (11),
(12). The following estimation of convergence speed
holds:

dl +d21n7’lH x(,r,) o

H.’L'—l'nH,B,V = nrta—p3 ( ) )

4 Stability of collocation methods.
Condition numbers

Theorem 4. In conditions of the theorem 3 the collo-
cation methods for the approximate solution of SIDE
(11) is stable in Hblder spaces from different of small
variations in approximative equations.

Proof of theorem. From the demonstration of
the theorem 3 we obtained that approximative collo-
cation operatod,, starting from the numbers > ny,

is invertible as operator acting fro&in to X,,, where
X,, andX,, are defined in [14], [8]

1AM = 0(1), Ay :Xn— X,

From proof of theorem 3 we have that the oper-
atorsU, is bounded inHz and X,, = U, Hg. Us-
ing the theorem 1. in conditiond = M, X, :)O(n,

1
Y, =U,Hp; Qn = U,, 5%1) :5%2) = %,We have
n

the collocation operatad,,. Theorem 4. is proved
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Theorem 5. Let the conditions of theorem

if yes we should study the errdf!) = ||z*(t) —

3. be satisfied. Then beginning with the num- z.(t)||, wherez*(t) is an unique solution for equation

bern > N; exist a condition numbeng A,,) for
approximative equations of collocation methods

andn(A,) < c-n(M), —.e(>0)is
an arbitrary small numben > N, (¢) :

lim (A,) = n(M).

n—oo

From theorem 3 we have,

1
||Ap — M]||x, = const HfLﬂ.
na
The conditions (6) of the theorem 2 Now the the-
orem 5. followed by from the relations (7) and (8).

5 Stability of exact SIDE

In this section we study the stability of SIDE exacts in
Holder spacesdis(I'), I' € A.

Using the Riesz operators we rewrite the SIDE
(11) in the form:

)3 AP (1) 1 Ba(t)(Qe) (1)1
s=0

tel, (16)

whereP = %(I + 5); Q = I — S; I identic operator
andSs is an singular operator.
We consider the SIDE (16) as exact equation.

We suppose that equation (16) has an unique solu-

tion. The coefficients, nuclei and right part have small
perturbations.

|| As — ASHC <& [|Bs — BSHC <g,

1S = flle <& [1Ks(t,m) = Ks(t,)lle <&,

(t,rel,e<l), s=0,...v a7

The following question appears: if the unique solution
x(t) exists for equation

ZA

(Px S) )(t) +

(Mz = By (t)(Q')(t)+

+%/Ks(tv 7)a(r)dr = f(t), teT, (18)
r

(16) andz.(t) is an unique solution for (18)?

Suppose A4(t), Bs(t), f(t) and K(t,7)
e HI,r = 0,1,2,...;, s = 0,...v (by
both variables).

As It was proved in [9], for small the coefficients
Ay(t), By(t) si K,(t,7), s = 0,...v, belong to the
H (), r=0,1,2,...,5s=0,...r.

We estimate the function norda Mz,

AMz E (M - M)z,
inHg(I') (0< f<a):
AMz = i{[A t)— A
s=0
[Bs(t) — Bs(t)](Qx(s))(t)Jr

1
— tT
2T

F

K (t,7)]z® (7)dr},t € T. (19)

It is enough to estimate||AMz||. and
H(AMz; ).
a) |AMz|(t)] :
[AMz)(6)] < D7 [[As(t) — As(6)] (P2 (8) |+
s=0

Y Bs(t) = Bo()](Pz) (1) +
s=0
o S [ It ) — Kot

‘.Z‘(T)HdT‘} = M; + My + Ms.

Taking into consideration that the operatd?s
@ is bounded in Blder spaceg17) and evident
equality||-||. < ||-||s for M7 andM,, we obtain.

My < SO0 — AP0} <
s=0

v
e [1Pz9||5 < el | Pllsllll5,:
s=0

Mz <3 {|Bs(t) = Bs0)I[(Qz) (1)}
s=0
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v
< ey 11Qz®|5 < el|QlIsllz]]5,-
s=0

. . l
Analog, using (17), we obtaif/s; < —s||x||c,,,

l
2 —e¢||z||5,, (Wherel is length of contour).

So,

[
(AMz)(0)] < e(l|Plls + IQlls + 5 )2l
(20)

b) H(AMz;3). Lett andt” € I'. Then

!(AMw)(t/) —(AMaz)(t")| <
Z! S(E)(Pe)()~
—[A(") = AP () |+
ZI ())(Qz) ()~

—[B(t") = B(t))(Q2"

227”/|

—[K ()= Ky(t ))|a) (1) | dr| =

We e;stimgte?\@ andMs.
Let|t —t | > e. Then from (17) we have

() |+
Ky(t', )]~

My < D {|[As(8) = A(E)]| (P2 ) (1) |+
s=0

HAL(") = A () [(P2D) ()]} <
<23 ||P2W¥]|5 <
s=0
2" 0P| |P||sl|=]]g, <
2¢' 7P| P|gl|2llpplt —1t |7,
If [t —t"| < e, then

M4<Z

SONP)(t) -

(P2 ()] +

Y (P YA — Ault)
s=0

M4—|—M5—|—M6.

<5ZHPx
s=0

+Z|IPI |le[H

H(Ag, )]l —t'|* < el|Pl|llal| .+

1Pllsllel .0 [H (As; @) + H(Ag; )|t — ¢,

(Ag; )+

The analog estimations are true faf; changing
[|P|| by ||Q|| and functionsd,(t), As(t) by Bs(t) and
Bs(t), s = 0,v. Soin both cases

A (t')](Pfﬂ N(t)-
> 2.

[As(t") = A ()] (P2)(t)]

< c1e’lfllp v,

|t' - t”|ﬁ
Z B _(tl)/]’éQx N(t)
" N S) "
D) = BENQENEN < et
(21)
where
d = min(F; o — ). (22)

For Mg, in similar way we will consider the case
it' —¢"| > . Then

Y 1 /
M < Z{%/]Ks(t -
s=0 T

Ky(, 7)) (7)|}ldr |+

2m Z{/|K t )7

sOF

—K (", 7]« (r)|ldr[} <

1-8

g ’ ”

oA < —llz|lgult ="
T

5
<
™

We used the fact that for functiorfs(
K(t, ) the relation (17) holds.
If |t — | <e,then

M6<—Z/‘K t T

SOF

t,7) and

K", 7)) (r)|dr|+
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27?12/’}( t '7)

_OF

K", 7)™ (r)]|dr| <

_Qszwm

+H(Kga)}t =" <

7” lee™” ﬁz

+H(Kg; o))t —t' 7.
From estimations ai/s, from (18) and (22) we obtain

[|AM]| <c-55; d =min(f;a — £). (23)

(Ks; o)+

(Kg; )+

Hd(r

From relation (23) we have farenough small the
equation (18) has unique solutiafi(t).

Using the theory of operator perturbation ([10])
and the relations (23) we can determine the relations
between exact solutions’(¢) andz.(t) of equations
(16) and (18) in spaced3(I")

Taking into consideration the definition of norm
in Holder spaces we obtain

% = 22]|s = O(°);

Remark The same results we can obtain for
Lebesgue and Generalizedtier spaces.
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