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Abstract: - The software maintainability can be ensured by carefully control of its software development process. An early 
measurement of maintainability starting from design phase is always desirable to produce maintainable software. Some of the 
researchers have tried to use soft computing techniques to measure maintainability. In spite of their reported validations, these 
models are not calibrated and no attention has been paid to evaluate and improve the stability of these methods.  
An attempt has been made in this paper to evaluate and compare several methodologies for improving the numerical stability of a 
fuzzy logic based maintainability metrics system. Tuning of fuzzy system parameters is carried out using genetic algorithm with 
system condition number as objective function for optimization.  A number of alternates are considered, in which training data sets 
are generated using different methods and these sets are used to evaluate objective functions in GA and accordingly fuzzy 
parameters are tuned. In order to show the advantage of such stability improvement, real projects’ maintainability data is used and 
our study indicates that fuzzy model performance gets increased after conditioning. 
 
Key-Words: - Leave software maintainability, soft computing, software metrics. 
 
1   Introduction 
For proper control of a software development process, we 
need to measure software attributes at every step of software 
development. The measured crisp value of an attribute 
provides right direction to software managers to take efficient 
and effective decisions. Some of the measures are dependent 
on many attributes and hence need integration, which may not 
be feasible using mathematical formulas, if attributes are of 
diverse nature.  For such types of integration, fuzzy modeling 
is ideal [1]. In the last decade, several fuzzy based integrated 
measures have come up in the literature [2, 3].  
Maintainability is one such hybrid attribute, whose crisp value 
depends on many lower order attributes such as source code 
size, comment ratio, software complexity, source code 
readability, documentation quality etc. Several researchers 
have stressed on the early measurement of maintainability 
starting from design phase itself so that timely steps could be 
taken for producing maintainable software [3-5].  
Several models have been proposed for finding 
maintainability of software in different perspective. [2, 7-18]. 
Earlier researchers used to consider only source code and its 
allied comments for program comprehension [7-9],  but later 
with increased complexity of software, understanding other 
software artifacts such as design documents were also 
assumed compulsory [2, 3, 19]. As there are several diverse 
attributes collected from different artifacts of software, which 
are distinct in measurement and performance scale, efforts are 
made to integrate these, in order to get a single crisp value of 
maintainability. For this type of integration fuzzy modeling 
was used by several authors [2, 3, 10]. 
 
2   Model under Consideration 
For the purpose of evaluation and experimentation, we have 
considered a four-input-parameters maintainability metrics 
computed with help of a fuzzy model proposed by Aggarwal 
et. al. [3]. In this authors have considered average cyclomatic 
complexity (ACC), readability of source code (RSC), 

Documents quality (DOQ) and understandability of software 
(UOS) as important attributes for the measurement of 
maintainability. Average Cyclomatic Complexity (ACC) is 
defined as average of Cyclomatic complexities of all modules. 
Above model considers ACC as one of the contributing factor 
toward software maintainability. A source code must be 
supported by enough comments to make it readable for the 
purpose of software comprehension. In the above model RSC 
is measured using comment ratio in source code. DOQ 
quantifies the quality of documents with the help of fog’s 
index. Fog index counts the length of sentences and difficulty 
of words. Higher the fog’s index less is the quality of 
documentation for the purpose of understandability. To 
measure the UOS, degree of similarity of usage of symbols 
between the language of documentation and language of 
source code is considered using Laitnen’s tool.  
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Figure 1: Maintainability Fuzzy System 

 
The fuzzy system, as shown in Figure 1, proposed in [3], 
comprises of four basic elements: fuzzifier, fuzzy knowledge 
base, fuzzy inference engine, and defuzzifier. Fuzzification 
module is used to change the crisp values of inputs into fuzzy 
values based on the membership functions (MFs) defined in 
knowledge base. Fuzzy knowledge base is comprised of two 
parts: database in which MFs are stored and rule base which 
stores the decision mechanism of model. It computes the 
maintainability in fuzzy domain consists of three sub modules; 
namely rule composition, implication and aggregation 
module. Rule composition transforms the fuzzified antecedent 
part of the rule to single numerical figure that is used to 
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implicate the output of a rule. Aggregation module then 
aggregates the individual outputs of rules to a single fuzzy set. 
Defuzzifier reverts the fuzzy output of inference module back 
to crisp values, which in turn is the output of the fuzzy system. 
Fuzzy system’s performance largely depends on the accuracy 
of definition of membership function and correctness of rule 
base. 
In order to fuzzify the inputs, three MFs for the ACC, RSC, 
DOQ and UOS were chosen and five MFs were chosen for 
output Maintainability. In order to measure software 
maintainability using the four input metrics, the rulebase for 
the system consisted of the eighty-one rules as follows: 
1. If (ACC is LOW) and (RSC is GOOD) and (DOQ is 
HIGH) and (UOS is MORE) then (MAINTAINABILITY is 
V_GOOD). 
2. If (ACC is AV) and (RSC is GOOD) and (DOQ is 
HIGH) and (UOS is MORE) then (MAINTAINABILITY is 
V_GOOD). 
3. If (ACC is HIGH) and (RSC is GOOD) and (DOQ is 
HIGH) and (UOS is MORE) then (MAINTAINABILITY is 
GOOD). 
… 
.81. If (ACC is HIGH) and (RSC is POOR) and (DOQ is 
LOW) and (UOS is LESS) then (MAINTAINABILITY is 
V_POOR). 
 
3. Stability Analysis of the Fuzzy System 
A fuzzy model is essentially a transfer function, which maps 
input space to output space. A good model, be it mathematical 
model or heuristic model, must be stable consistent, cohesive 
and robust for its better performance. A model is called 
numerically stable, if given small perturbation in inputs, 
output doesn’t vary marginally. This is also called structural 
stability [20]. Aggarwal et. al. in [21] carried out sensitivity 
analysis of a fuzzy model and a neural network model of a 
specific chosen problem. In due course, authors compared the 
stability of both models with the help of empirical evidence. 
Stability of system is derived by calculating condition number 
for each input parameter. Condition number of each input 
must be low for the whole system. Condition number is 
defined as the maximum value of the ratio of the relative 
margin in the output to the relative change in data over the 
problem domain and can be expressed in the form of an 
equation as shown below: 
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x

CN  is condition number corresponding to x  input, 

),,( zyxf  is the fuzzy model function to measure 
maintainability and zyx ,,  are the input parameters and x∆ is 
the perturbation in the input parameter x . Perturbation must 
be very small and in our experiments we have taken this as 0.1 
percent of input parameter. Functions with a condition number 
closer to one are “more stable” or “well conditioned” as 
compared to functions with a condition number greater than 
one.  
Authors in [21] concluded that neural network based models 
are more stable than fuzzy models. But unavailability of 
sufficient training data and large training time of neural 

network are deterrent in adopting neural network scheme for 
modeling purpose. Further if the system for which, model is 
prepared, is a new system, then we don’t have any alternative 
but to develop fuzzy model for such systems. Therefore, fuzzy 
system models must satisfy the stability criterion. When the 
system is continuous and parameters are monotonic, dips and 
steep-changes in the solution-space (surface view) indicates 
an ill-conditioned and unstable system. These dips and steep 
changes are measured using the concept of condition number 
as described above. So, if we need to make system stable, 
which has to be, the condition number needs to be minimized.  
In previous paper [22], an attempt has been made to improve 
the stability of a fuzzy model based measurement of three-
inputs software maintainability metric [2] by transforming the 
unconditioned system to the conditioned one using genetic 
algorithm. The criterion of conditioning/objective function 
was chosen as the overall stability of system, which is 
aggregated by taking mean squared value of condition number 
of each input. The minimization of the defined objective 
function results into defining revised boundaries of the 
membership functions of each of the inputs under 
consideration. In our previous methodology, we have only 
considered the tuning of MFs by training fuzzy model by 
equispaced points training data set. A training data set is made 
by taking equispaced points from each input and then merging 
these in all permutations, which in turn is used in objective 
function. The results in previous paper were quite encouraging 
and prompted us to experiment with new alternatives of 
different training data sets and try to find out the best method 
for tuning MFs of fuzzy system with minimum condition 
number. 
 
4. Fuzzy System Conditioning using Genetic 
Algorithms 
As illustrated in Figure 2, initially, GA generates a random 
population of individuals called chromosomes and then based 
on an objective function it ranks and selects individuals to 
build a mating pool in order to generate next generation 
offsprings using genetic operators such as crossover or 
mutation, which have the higher possibility of being fitter than 
the present individuals. In fuzzy system conditioning, 
boundaries of membership functions of already unconditioned 
system are varied and each individual in population defines 
new revised boundaries, which is also a solution to the 
problem, however with a varying fitness. Now each solution is 
checked for its fitness based on condition criterion described 
in section III. 
Fuzzy system knowledge base has two main components: 
MFs of inputs & outputs and the rule base. These components 
are created using expert knowledge. Sometimes, when the 
system is not a legacy system, there are enough chances that 
definitions of membership functions and rule base are not 
optimal [23]. This is the main source of instability in the 
system and same is true for the model under consideration. 
Hence our problem is reduced to optimize the MFs and the 
rule base such that the condition numbers of all inputs of the 
system decreases. In the present study, we have considered 
optimization of the MFs only using different alternative of 
training  data sets  with a view to  adjudge the  best  method of  
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Figure 2: Major Steps in GA Algorithm 
 

training in order to get a stable fuzzy model. We have carried 
out experiments in Matlab framework, in which MFs of fuzzy 
model described above are tuned using GA such that overall 
condition of the system is reduced. As there is no guarantee of 
settling time of a condition number to a minimum specified 
value, therefore GA is iterated for a fix number of times. In 
our experimentation setup there are 4 runs of 100 generation 
each for one GA optimization. 
 

5.  Genetic Encoding of Fuzzy System 
In the four-inputs and single-output system discussed above, 
each MF is trapezoidal (triangular MF is a special case of 
trapezoidal MF), thus each MF has four parameters, which 
must be adjusted for optimization. So a chromosome 
(probable solution) will contain individual genes in the form 
of the parameters of all the MFs of inputs and outputs. In the 
model under consideration, there are total 17 membership 
functions. So there will be 17*4=68 genes in a chromosome. 
In order to tune a MF, we allowed 10% variation in the 
existing range of each parameter. Thus if a parameter value of 
a MF of an input is 5 and input range is 1 to 13, then this 
parameter value is tuned within the range of 5-0.1*(13-1) and 
5+0.1(13-1) i.e within the range of 3.8 to 6.2. A pictorial 
encoding scheme is shown below in figure 3. 
 
6. Objective function definition 
This is a multi-objective problem, as we need to decrease the 
condition number of each input. The condition number of each 
input can be calculated using equation 1 and is shown below 
in form of equation 2-5: 
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An integrated objective function is calculated by taking the 
mean square value of all condition numbers, corresponding to 
each of the inputs. This number is called condition number of 
the system CNSYS and is used as objective function for GA.   
CNSYS  = MSE(CNACC, CNRSC, CNDOQ, CNUOS)……(6) 

 
Figure 3. Defining a chromosome 
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7. Generation of Training Data for MFs Tuning 
In our experimentations, we have developed two modules. 
First is the main genetic module and is based on the algorithm 
described above. Second module defines an objective function 
which is used to calculate system condition for a given data 
set of inputs (here called training data set and is a matrix of 
2401×4 size) based on equation 2, 3, 4, 5 and 6. Main GA 
module generates various acceptable solutions. For each 
chromosome in each population, GA module changes only 
membership functions’ parameters from the unconditioned 
fuzzy model keeping rule base unchanged and then in 
objective function, fuzzy inference system evaluates output of 
system with respect to inputs provided in form of training 
data. Subsequently, an input is perturbed throughout in the 
training data set, and again same fuzzy system is used to 
evaluate outputs with respect to this perturbed data set. These 
two output sets are used then to calculate condition number of 
the system w.r.t. the particular input by following equation 2 
to 5. Same procedure is repeated for other inputs and then 
following equation 6, we get overall system conditioning for 
particular chromosome. We have formulated six methods for 
constructing training data for optimization as described below: 
a) Conditioning with different random data set for each 
solution in population 
In this method a new random numbers data set of 2401 points 
are generated for each chromosome in population of one 
generation of GA algorithm for evaluating condition number 
of inputs and whole system.  
b) Conditioning with same random data set for each solution 
in population 
This method generates random numbers data set of 2401 
points once in Main GA module and same is used for finding 
fitness for each chromosome in each population of GA 
algorithm.  
c) Conditioning with one input equispaced and same random 
numbers data set for each of rest inputs for each solution in 
population 
Here main function generates two data sets of 2401 points 
each from all inputs’ ranges. One data set contains equispaced 
points from all inputs and another set contains random 
numbers from all inputs. Then both of these sets are used to 
find the condition numbers of all inputs.  
d) Conditioning with one input equispaced and different 
random numbers data set for each of rest inputs for each 
solution in population 
Here main GA function generates one data set which contains 
equispaced numbers from all inputs and another set which 
contains random numbers from all inputs is created by the 
objective function each time for each chromosome. Then 
these both sets are used to create four training data sets for all 
inputs by following the same procedure as described in 
method three. 
e) Conditioning with all permutation generated by taking 
equispaced points from each input for each solution in 
population 
In this method seven equispaced points are taken from each 
input space and then these are combined in all permutations to 
form a training data set of 2401(7^4) points, which is used to 
calculate condition numbers for each input. We have taken 

only seven equispaced points from each input. However it can 
be less or more.  
f) Conditioning with each input equispaced points summation 
for all solutions in population 
Here from each input space 2401 equispaced points are 
generated and then these are clubbed together to form a 
training data set of 2401 points.  
In order to validate the methodologies, these need to be tested 
with a new data set. So once the training is completed, these 
methods are tested with a data set of 10000 points. This data 
set is randomly generated for all inputs and is same for all 
above defined alternatives. To fully randomize the output, we 
repeated this process ten times and then average system 
condition number of all ten outputs is taken for comparison. 
Table 1 lists condition number of unconditioned and 
conditioned system for all six alternatives.   
 

TABLE 1: Comparison of condition numbers of 
unconditioned and unconditioned systems 

Methods CNACC CNRSC CNDOQ CNUOS CNSYS 
Unconditio-
ned System 5.0622 11.945 13.314 4.4294 96.087 

Conditioned 
System with 
1st Method 

2.9006 11.943 11.973 5.629 82.631 

Conditioned 
System with 
2nd  Method 

2.1427 4.7642 5.5817 2.2429 16.064 

Conditioned 
System with 
3rd  Method 

2.7784 5.8229 5.9942 3.0474 22.023 

Conditioned 
System with 
4th  Method 

3.6703 4.5191 6.5657 
 

3.657 
 

23.258 

Conditioned 
System with 
5st Method 

1.895 7.6208 4.4021 8.7757 40.451 

Conditioned 
System with 
6st Method 

2.384 13.577 5.8428 4.6509 62.599 

 
Figures 4(a) to 10(a) show the graph of input UOS versus 
maintainability while taking constant values of other three 
inputs. Figure 4(a) shows Maintainability curve with respect 
to UOS input parameter in unconditioned System. There are 
steep changes and dip (marked by arrow) in the 
maintainability curve. Figures 4(a) to 10(a) show surface view 
of fuzzy model with UOS & RSC on input axes and 
Maintainability on output axes. Figures 4(b) shows surface 
view of fuzzy model with UOS & RSC on input axes and 
Maintainability on output axes in unconditioned system. This 
is also comprised of steep changes in maintainability with a 
gradual increase in input-parameters.  
 
8. Results & Discussions 
A per Table 1, Condition number for each input parameter is 
reduced in all six methods. From table, it can be deduced that 
Second Method is best, in which overall system condition has 
been reduced from 96.087 to 16.064. This is a six fold 
decrease in condition number of the system. It is a significant 
improvement in the stability and system can be further 
stabilized with increased number of GA iterations. Others 
better methods are third & fourth methods, for which 
condition numbers are 22.023 and 23.258 respectively. 
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Figure 5: System is conditioned with first method 
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Figure 6: System is conditioned with second method 
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Figure 7: System is conditioned with third method 
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Figure 8: System is conditioned with fourth method 
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Figure 9: System is conditioned with fifth method 
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Figure 10: System is conditioned with sixth method 

In these three methods, which yield good conditioning, 
condition numbers of all the inputs as well as whole system 
have been less as compared to unconditioned system while on 
the other side first, fifth and sixth methods one or two inputs 
condition number is larger than unconditioned system. 
Although in these methods, whole system condition number is 
reduced but these also destabilize system at other inputs.  
Figure 9(a) is of unconditioned system, in this as pointed by 
an arrow, there is a dip at axis (3.65, 870) which violates 
model consistency and continuity. In all other figures this dip 
has been removed completely. If we analyze the surface view 
of fuzzy model with UOS & RSC on input axes and 
Maintainability on output axes of figure 9(b), there are steep 
changes in maintainability given small variations in inputs for 
unconditioned system.  
These steep changes in maintainability have been replaced by 
smoother curves in figures 10(b) to 15(b) for conditioned 
system for the same surface view. If we compare the surface 
view of maintainability versus RSC & UOS of unconditioned 
system (figure 9(b)) with conditioned system of second 
method (Figure 11(b)) which has the least condition number, 
surface view is smoothest of all other methods. So we can 
deduce that system can be made stable or well conditioned by 
following method number 2 or 3 or 4 in that order. 
Authors in [3] have validated their model by collecting 
empirical data of maintenance time of eight software projects 
and same has been used to evaluate the performance of the 
model. In this paper, we have used the same data to check the 
effect of conditioning on fuzzy system performance. Table 2 
shows the computed maintainability values from 
unconditioned fuzzy model and other fuzzy model 
conditioned with all the six alternatives, against input data 
from eight projects. In the last row of table 2 computed 
maintainability values are correlated with average 
maintenance time of eight projects. Here, we find that 
conditioning does not deteriorate the correlation in all the 
methodologies, rather it has been increased in each method. 
Although these methodologies are not targeted to increase 
correlation between maintainability and average maintenance 
time but this favorable change further proves the merit of our 
proposed methodologies for conditioning the system. 
 
9. Conclusion 
This paper has presented six different alternatives to generate 
training data in order to find out the best possible method of 
conditioning. Each of the methods was evaluated using a new 
data set of 10000 points. Our initial study indicates that if 
training data set is created randomly from each input space 
and system is conditioned using this training data then this 
method outperforms other methods by making system more 
stable on average basis. Methods with one input equispaced 
and same random numbers data set for each of rest inputs for 
each solution in population or with one input equispaced and 
different random numbers data set for each of rest inputs for 
each solution in population also give better results as 
compared to the rest three methods. These alternatives are also 
validated against eight real projects average maintenance time 
by computing maintainability from the conditioned systems 
and increased correlation proves the worthiness of these 
methodologies. 
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Table 2: Correlation between observed maintenance time and computed maintainability values  
 

Maintainability of system when conditioned with 
Project 
Number 

ACC 
 

RSC 
 

DOQ 
 

UOS 
 

Corrective 
maint-
time 

Unconditioned 
system 

First 
Method 

Second 
Method 

Third 
Method 

Fourth 
Method 

Fifth 
Method 

Sixth 
Method 

1 8.5 3.8 11 355 11.300 3.610 3.615 3.888 3.640 3.212 3.983 4.460 
2 12 7.7 15 528 21.700 7.370 6.726 6.332 6.674 6.958 7.124 6.700 
3 13 5.7 11 492 18.300 5.110 5.538 5.400 5.277 5.542 5.543 5.707 
4 5.4 8.3 12 567 18.000 6.810 6.027 5.311 5.546 6.116 5.966 5.692 
5 15 8.9 12 363 21.100 8.000 7.492 6.750 7.331 7.275 7.409 7.051 
6 7.5 7.4 8.9 390 16.100 4.560 4.826 4.948 5.127 5.290 5.152 5.763 
7 11 9.2 12 451 17.900 7.070 6.758 6.473 6.438 6.375 6.942 6.543 
8 9.1 6.9 13 479 17.200 6.000 6.240 6.046 6.024 5.986 6.456 6.087 

Correlation between computed maintainability values and 
observed maintenance time  0.873 0.902 0.875 0.913 0.961 0.899 0.912 
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