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Abstract: The BEM is applied to a mixed boundary value problem of linear elastostatics whose region is multiply
connected. The sample problem is a hollow pipe on the ground, subjected to a singular, vertical force on the top.
The formulation does not involve any singularity.
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1 Introduction

In the presented study, a two-dimensional mixed
boundary value problem is solved by boundary ele-
ment method for a linear, homogeneous and isotropic
material in a multiply connected region. It is known
that the reciprocal theorem gives an integral equation
which relates two different elastostatic states of the
same body. The first elastostatic state in the expres-
sion of the reciprocal theorem, represents the prob-
lem to be solved, whereas the second one expresses
the displacement and stress field in an unbounded
medium due to an application of a point load. The
second state is also named as a fundamental solution.
The aim of the boundary element method is to re-
duce the problem to a system of linear algebraic equa-
tions. Boundary is idealized as a collection of seg-
ments. End points of these segments are named as
nodal points. On each segment, any unknown func-
tion is selected as a certain function passing from the
end points. Then the unknowns of the problem are re-
duced to the values of the displacement/stress compo-
nents at nodal points. 2N integral equations, each one
of them corresponding to a singular loading at a nodal
point in one direction can be written. In these inte-
gral equations, integrals over the boundary are trans-
formed to the summation of the integrals over the seg-
ments. The number of unknowns is twice times of the
number of nodal points for the first and second bound-
ary value-problems, but in the mixed boundary value
problem, it is less than the twice of number of nodal
points. At the boundary points, on which the values
of surface traction in one side and displacement on

the other side are known, an additional equation can
be written between the components of the unknown
surface traction vector due to symmetry of stress ten-
sor. The construction of the system and the unknowns
have been explained on a sample, mixed boundary-
value problem which is an hollow pipe on the ground,
subjected to a singular pressure force on the top.

2 Basic Formulation
The definition of an elastostatic state is summarized
below:
A region B with interior volume V and boundary S
is considered. The ordered triple S[u(x), τ (x),f (x)]
defines an elastostatic state on V , where V is the clo-
sure of V , u(x) is displacement vector and x denote
the position vector of a point, τ (x) is the stress tensor
and f denotes body force. They satisfy the following
relations:

τkj,j + fi = 0 (1)

τij = λδijεkk + 2µεij (2)

εij =
1
2
(
∂ui
∂xj

+
∂uj
∂xi

) (3)

where εij is the strain tensor, δij represents Kro-
necker’s delta, λ and µ indicate Lamé’s elastic coeffi-
cients.

The expression of the reciprocity theorem
which is written between two elastostatic states
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S?[u?(x), τ ?(x),f?(x)] and S[u(x), τ (x),f(x)]
of the same body is [1-4]∫

S
T · u?dS +

∫
V
f · u? dV

=
∫
S
T ? · u dS +

∫
V
f? · u dV (4)

Ti = τij nj , T ?i = τ?ij nj (5)

T and T ? are surface traction vectors in two states,
respectively, n is the outward normal of the sur-
face S. It will be considered that an elasto-
static state S[u(x), τ (x),f(x)] represents a prob-
lem to be solved on the region B of volume
V bounded by surface S. This problem can
be a first, second or mixed boundary-value prob-
lem [5]. The body force f will be neglected
in the formulation. The second elastostatic state
S?[u?(x), τ ?(x),f?(x)], represents the displace-
ment and stress fields in an unbounded elastic medium
due to a singular point load f?. The elastostatic state
Sk[uk(x,y), τ k(x,y),fk(x,y], which have been
given here, will be used as S?[u?(x), τ ?(x),f?(x)]
in Eq. (4) for the solutions of plane elasticity prob-
lems.

3 A Singular Elastostatic State for
the Solutions of Plane Elasticity
Problems

A body force in an infinite elastic medium having the
same material with the problem to be solved is defined
as

fk(x,y) = δ(x− y) ek (6)

where x and y represent the position vectors of an
arbitrary point and a specific point of volume V , re-
spectively. ek (k = 1, 2) represents a base vector in
Cartesian coordinates. δ(x−y) is a generalized func-
tion, which is known as Dirac delta function satisfying
following property for an infinite volume V :

∫
V
h(x)δ(x− y) dVx = h(y) for y ∈ V

= 0 for y /∈ V (7)

The displacement field uk(x,y) due to this body
force can be represented as

uki (x,y) =

− 1
8πµ(1− ν)

[(3− 4ν)δikln(r)− x′kx
′
i

r2
] (8)

where ν is the Poisson’s ratio and

x′k = xk − yk , r =
√
x′ix

′
i. (9)

Using Eq. (3), the (ij)th component of strain tensor
can be written as

εkij(x,y) = − 1
8πµ(1− ν)

[
− δij

x′k
r2

+

(1− 2ν)[δik
x′j
r2

+ δjk
x′i
r2

] + 2
x′kx

′
ix
′
j

r4

]
(10)

And substituting Eq. (10) in Eq. (2), the (ij)th com-
ponent of the stress tensor, τ k(x,y), can also be ob-
tained as

τkij(x,y) = − 1
4π(1− ν)

[
(1− 2ν)[− x′k

r2
δij +

x′j
r2
δik

+
x′i
r2
δkj ] + 2

x′ix
′
jx
′
k

r4

]
(11)

The expression of reciprocal identity (Eq. (4))
which is written between S[u(x), τ (x),0] and
Sk[uk(x,y), τ k(x,y),fk(x,y)] is reduced to the
following form:∫

S
uki (x,y).Ti(x)dS −

∫
S
T ki (x,y).ui(x)dS (12)

=

{
uk(y) (y ∈ V )
0 (y /∈ V )

It is clear that if the boundary values of T (x)
and u(x) are known on the boundary S, displacement
vector at an inner point y can be determined using Eq.
(12). Besides the stress components can also be cal-
culated at this point using Eq. (12) and Eqs. (2) and
(3). This expression has been given below:

τkl(y) =
∫
S
ukli (x,y).Ti(x)dSx

−
∫
S
τklij (x,y)nj .ui(x)dSx (13)
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where

ukli (x,y) =
1

4π(1− ν)

[
(1− 2ν)[δik

x′l
r2

+ δil
x′k
r2
− δkl

x′i
r2

] + 2
x′ix

′
kx
′
l

r4

]
(14)

τklij (x,y) =
µ

2π(1− ν)

[
− (1− 4ν)δijδkl

1
r2

+ (1− 2ν)[δilδjk
1
r2

+ δikδjl
1
r2

]

+2(1− 2ν)[δij
x′kx

′
l

r4
+ δkl

x′ix
′
j

r4
]+

2ν[δik
x′jx

′
l

r4
+ δil

x′jx
′
k

r4
+ δjl

x′ix
′
k

r4
+ δjk

x′ix
′
l

r4
]

−8
x′ix

′
jx
′
kx
′
l

r6

]
(15)

4 Sample Problem
An hollow pipe settled on the ground, subjected to a
singular vertical pressure force acting at the point y3,
P = 702.69 N , is considered as shown in Fig. 1 [6].
The Poisson’s ratio, ν is 0.4. The problem is consid-
ered as a plane stress problem. The third dimension of
the column is 152.4mm.

P

x
2

x
1

y3

y4

Q

A

B

C

D
R1

R2

A’

B’

C’

D’

Fig. 1. Sample problem

The boundary conditions of the problem are as fol-
lows:
The surface tractions on the ABCD part of the bound-
ary can be defined as

T = [−Pδ(x− y3) +Qδ(x− y4)]e2 (16)

The displacement components on A and C points are

u1(y4) = u2(y4) = 0 and u1(y3) = 0 (17)

And the integrals over boundary are reduced to line
integrals. ABCD and A′ D′ C′ B′ parts of the bound-
ary are named as L1 and L2, respectively. The surface
tractions are known onL1 andL2 while displacements
are known on y4. And, the problem is symmetric with
respect to x2 axis. From now on, S[u(x), τ (x),0)]
will represent the problem mentioned above. Substi-
tuting Eqs. (5) and (16) in Eq. (12), the following two
integral equations given below are found:∫
L1

T ki (x,y)ui(x, t)dL1 +
∫
L2

T ki (x,y)ui(x, t)dL2

= P [uk2(y4,y)− uk2(y3,y)] (k = 1, 2) (18)

From now on, it will be considered that point y is
outside the planar surface. Then the unknowns of the
problem become the displacement vector u(x) on L1

and L2. Besides during integrations over the bound-
ary, one must keep the region on the left.
The procedure which will be used to solve these un-
knowns by Boundary Element Method has been ex-
plained below step by step:
The total boundary (L1 +L2) is idealized as a collec-
tion of line segments which named as boundary ele-
ments. If the number of these line segments is N, the
number of the end points, named as nodal points, is
also N. The starting and end points of Jth element are
x(J) and x(J+1). It is assumed that the variation of any
displacement component on the J’th line segment has
the following form.

uk(s) = uk(J)[1− s

l(J)
] + uk(J+1)[

s

l(J)
] (k = 1, 2) (19)

Where s is the distance fromx(J) to any point between
x(J) and x(J+1). After these definitions the unknowns
of the problem will be reduced to the nodal values of
displacement components on L1 and L2. Both L1 and
L2 parts have been divided to N1 intervals. Then the
number of the nodal points becomes N=2N1. The selec-
tion of the nodal points are shown in Fig. 2.
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Fig. 2. Nodal points

It must be emphasized that none of the A′, A, C′,
C points are not selected as nodal points. On inner
and outer boundaries, the position of a nodal point,
x(I), on a circle can be defined by an angle θ(I) and
|θ(I+1)− θ(I)| = 2π/N1. Depending upon these, the
numbers of the unknowns and their order can be ex-
pressed as follows:
First (N1/2) unknowns are the horizontal displacement
components on nodal points onL2 starting from u1(1).
The following (N1/2) unknowns of the problem are the
vertical displacement components on nodal points L2

starting from u2(1).
The third group of unknowns will be the horizon-
tal components of the displacement vector on nodal
points of BC. Starting from u1(N1+1) till u1(N1+(N1/4)).
The fourth group of the unknowns are horizontal com-
ponents of the displacements vector on DA starting
from u1(N1+(N1/2)+1) till u1(N1+(3N1/4)).
The fifth group of unknowns will be the vertical com-
ponents of the displacement vector on nodal points of
CB. Starting from u2(N1+1) till u2(N1+(N1/4)).
The last group of the unknowns are vertical compo-
nents of the displacements vector on DA starting from
u2(N1+(N1/2)+1) till u2(N1+(3N1/4)).
Here, it must be also emphasized that (N1) is selected
to be an integer having 4 as a factor. And, the total
numbers of the unknowns become M = 2N1-1. Since
u(y4) = 0 and we use line elements the last un-
known of the last group vanishes. To determine these
unknowns M=2N1-1 equations is necessary. Any of these
equations can be written selecting loading point y to
be any nodal point x(I) and k being equal to 1 or 2 in
Eq. (18). But x(I) is a boundary point of the planar re-
gion. Because of this an artificial boundary including
all of the line segments but not the nodal point x(I),
will be defined for a singular loading on that nodal
point. Around x(I) a small circular arc Lε, with radius
ε which leaves this nodal point outside the region is
added to complete this artificial boundary [1,4], (Fig.
3).

Fig. 3. Artificial boundary

It is assumed that any displacement component is be-
ing equal to uk(x(I)) and any component of surface
traction vector is zero over this circular arc. As a con-
sequence of the definition of the artificial boundary,
x(I) is not a point of the region bounded by this artifi-
cial boundary. After necessary calculations, the radius
ε will be shrunk to the nodal point x(I). The first as-
sumption on circular arc, Lε, means that any displace-
ment component at a nodal point is single valued. The
second assumption is that there is not a singular force
acting at that nodal point. Then, if a singular force ex-
ists at a point of the boundary, this point must not be
selected as a nodal point either. After these Eq. (18)
takes the following form∫

L1

T ki (x,x(I)).ui(x)dL1

+
∫
L2

T ki (x,x(I)).ui(x)dL2

+ lim
ε→0

(
∫
Lε

T ki (x,x(I)).ui(x(I))dLε)

= P [uk2(y4,x(I))− uk2(y4,x(I))] (k = 1, 2) (20)

Where k represents the direction of the loading. At
first an 4N1 × (4N1 + 1) augmented matrix will be
constructed as follows:
I’th of the first N1 equations represents an horizon-
tal loading at x(I) on L2 while I’th of the second N1
equations corresponds to a vertical loading at the same
point. Changing the loading points to the points of
L1 from the points of L2 the third and the fourth N1
equations are also constructed. This augmented ma-
trix can be reduced another 2N1 × (2N1 + 1) aug-
mented matrix considering symmetry with respect to
x2 axis and deleting the last row and the 2N1’th col-
umn of it, the last augmented matrix, having the or-
der (2N1 − 1) × (2N1), is found. The solution of
it gives the displacement components of the nodal
points on inner and outer boundaries. The variation of
the horizontal and vertical of displacement vector on
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L1 and L2 versus polar angle θ are given in Figs. 4-7.
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Fig. 4. Variation of the horizontal component of
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Fig. 7. Variation of the vertical component of
displacement vector on A′B′C′ versus polar angle, θ

Using Eq. (13), the stress components are also

calculated on a circle with radius R = 16.64cm,
which is the mean radius, versus polar angle θ and
the results have been given in Figs. 8-10.
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Fig. 8. Variation of stress component, τ11 versus
angle θ on the mean radius
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Fig. 9. Variation of stress component, τ12 versus
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Fig. 10. Variation of stress component, τ22 versus
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5 Conclusions and Discussion
A solution method of plane problems of linear elastic-
ity has been explained on a sample mixed-boundary
value problem. This problem has been considered as
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a plane stress problem. The reciprocity theorem pro-
vides a relation between displacements, traction com-
ponents and body forces for two loading states of the
same body and this relation gives a boundary integral
equation for unknown fields on the boundary, com-
plementary to the applied fields. This integral equa-
tion has been solved numerically. The selected ap-
proximations for unknowns are linear and the integral
equation is reduced to a system of algebraic equations.
Of course, higher order polynomials can be selected
for a better approximation but it must be emphasized
that the solution is heavily dependent to the diagonal
terms of the coefficient matrix which remain constant
for every approximation.

Here, the element number is selected to be 48 on
total boundary. The increment of the element num-
ber slightly affect the result after 48. It is assumed
that the contact between the pipe and ground is valid
only at point A in the presented problem. In the fol-
lowing study, the contact line will be taken as another
unknown of the problem and also the variation of the
surface traction vector on this contact line will also
produce another group of unknowns.
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