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Abstract: - In this paper we construct two exact analytical three-dimensional solutions for cylindrical wall and 
fin. We assume that the heat transfer process in the wall and the fin is stationary.  
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1 Introduction 
Usually mathematical modeling of systems with 
extended surfaces is realized by one dimensional 
steady-state assumptions [1]-[4]. In our previous 
papers we have constructed two and three 
dimensional analytical approximate [5]-[8] 
solutions. In paper [9] was constructed exact 2-D 
solution for rectangular fin. Here we construct the 
solution in different from [9] way. This way gives 
more suitable form of the solution in the form of 
Fredholm integral equation. We reduce exact 3-D 
problem to two dimensional and obtain exact 
analytical two-dimensional solution by the Green 
function method.  
 
 

2 Mathematical Formulation of 3-D 

Problem and Exact its Reduction to 

Non-homogeneous 2-D Problem 
We will start with accurate three-dimensional 
formulation of steady-state problem for system of 
cylindrical wall and fin. The one element of the wall 
(base) is placed in the domain 

[ ] [ ] [ ]{ }0 1, , 0, , 0,r R R z H ϕ∈ ∈ ∈ Φ� �  and we 

describe temperature field ),~,~(
~
0 ϕzrV  in the wall 

with the equation: 
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The cylindrical fin of length L occupies the domain 

[ ] [ ] [ ]{ }1 2 0, , 0, , 0,r R R z H ϕ∈ ∈ ∈ Φ� �   

and the temperature field ),~,~(
~ ϕzrV  fulfills the 

equation: 
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And we have following boundary conditions in 
ϕ  direction (others needed boundary conditions 
will be added in non-dimensional form in next 
sub-section):  
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Introducing following average integral values for 
argument ϕ  we can reduce equations (1) and (2) 

from 3-D to 2-D: 
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Integration the equation (1) for the wall over 
[0, ]ϕ ∈ Φ gives following equation (exact 

consequence of 3-D partial differential equation 
(1)): 
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The first pair of boundary conditions (3) allows 
rewrites the last equality in form of two- 
dimensional non-homogeneous equation:   
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2.1 Dimensionless Temperature Field in the 

Wall 
We will use following dimensionless arguments, 
parameters to transform our problem to 
dimensionless problem: 
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Here )( 0kk - heat conductivity coefficient for the fin 

(wall), )( 0hh - heat exchange coefficient for the fin 

(wall), 0H  - width (thickness) of the fin, L  - length 

of the fin, H - thickness of the wall, bT  - the 

surrounding temperature on the left (hot) side (the 

heat source side) of the wall, aT  - the surrounding 

temperature on the right (cold - the heat sink side) 
side of the wall and the fin. One element of the wall 
(base) placed in the domain now is 

[ ] [ ]{ }0 , , 0,1r zρ ρ∈ ∈  and we can describe the 

dimensionless temperature field ),(0 zrU  in the wall 

with the equation: 
2

0 0
02

1
( , ) 0

U U
r Q r z

r r r z

∂ ∂∂  
+ + = ∂ ∂ ∂ 

.  (7) 

We add needed boundary conditions as follow: 
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And in contradiction with our previous papers we 
assume general non-homogeneous boundary 
conditions on top and the bottom of the wall (the 
same generalization will be assumed for the fin): 
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We assume the conjugations conditions on the 
surface between the wall and the fin as ideal thermal 
contact - there is no contact resistance: 
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2.2 The Temperature Field in the Fin 

The cylindrical fin of length l  occupies the domain 

[ ] [ ]{ }1 2, , 0,r z bρ ρ∈ ∈  and the temperature field 

),( zrU  fulfills the equation: 
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We have following boundary conditions for the fin: 
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3 Exact Solution of 2-D Problem 
To clearer explain the main idea we will start with 
the case of homogeneous equations for the 
cylindrical wall and fin and for simplicity in this 
section we assume additionally homogeneous 
boundary conditions (10), (15). The general case 
(with non-homogeneous differential equations and 
non- homogeneous boundary conditions) will be 
considered in next section. 
 
3.1 The Separate 2-D Problem for the Wall 
We rewrite the boundary condition (9) together with 
the conjugation conditions (11) in following 
common form: 
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The solution for the wall can be written in well 
known form by means of Green function, see, 
e.g. [10]-[12]: 
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The two-dimensional Green function has 
following form: 

( ) ( )
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The one-dimensional Green functions have such 
representations: 
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Here ( )k lλ µ are positive roots of following 

transcendental equations: 

[ ]
[ ]

0
0 0 0 1 0

0 0 1 1 1

0 0 1 1 1

0
0 0 0 1 0

( ) ( )

( ) ( )

( ) ( )

( ) ( ) 0.

J J

Y Y

J J

Y Y

γ λρ λ λρ

γ λρ λ λρ

γ λρ λ λρ

γ λρ λ λρ

 + × 
− −

− ×

 + = 

 

Representation (17) in notations (16) can be 
rewritten in shorter form (with known 
function 0 ( , )r zΦ ): 
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This function is given by expression: 
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The representation (21) is not the solution 
because of unknown function 0 ( )F η .  

 

3.2 The Separate 2-D Problem for the Fin 
We rewrite the conjugations conditions (11) in 
following form: 
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Similar as in case of wall the solution for the fin 
can be represent in following form: 
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The shorter form looks as follow: 
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The second Green function with small 
modifications has a same form as expression 
(18):  
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Here ( )n mλ µ are positive roots of following 

transcendental equations: 
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3.3 The Conjugation of Two Separate    

Problems 
We obtain easy from representations (21), (24) 
following two equalities: 
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The system (25) allows writing out following second 
kind Fredholm integral equation: 
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 This second kind Fredholm integral equation (27) 
by the given kernel ( , )z ηΓ has exact one solution. 

Knowing ( )F z we can find from representation (24) 
the solution for the fin. In similar way we construct 
integral equation for the function 0 ( )F z  and find 

solution for the wall. 
 
 

4 Exact Solution by Non-homogeneous 

Environment Temperature  
Now we will consider the case of non-homogeneous 
equations and non-homogeneous boundary 
conditions.  
 

4.1 The Statement of the Full Mathematical 

Problem 

As the main equations for the wall and the fin we 
take differential equations (7), (12): 
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The boundary conditions for the wall are as follow: 
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Similar are the boundary conditions for the fin: 
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To complete the full statement of generalized 
problem, we must add the conjugations conditions to 
equations (29)-(31): 

1 1

11

0 0 0

0
0

00

,

.

U U

U U

r r

ρ ρ ρ ρ

ρ ρρ ρ

γ γ

= − = +

= += −

=

∂ ∂
=

∂ ∂

            (32) 

 
4.2 The Separate Solutions for the Wall and the 

Fin  

In the same way as in the sub-section we introduce 
the notation (16). Then the solution in the wall again 
can be presented in the same form (21): 
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Now the expression for the first term of right hand 
side has significant more complicate form: 
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The solution for the wall with boundary conditions 
(22) in similar way as for wall can be presented in 
the form:  
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The expression for the first term of right hand side 
has the form: 
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4.3 The Junction of Solutions for the Wall and 

the Fin  

We introduce following notations: 
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Then the representations (33) and (35) allow obtain 
easy following two equations: 
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From this system (37) we obtain following second 
kind Fredholm integral equation: 
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In its turn the first term in the right hand side has 
more complicate expression:  
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Evidently this second kind Fredholm integral 
equation (38) has exact one solution. Again, by 
known ( )F z  the representation (35) allows find the 

solution for the fin. In similar way we can construct 
integral equation for the function 0 ( )F z  and find 

solution for the wall. 
    
 
 

5 Conclusions 
We have constructed two exact two-dimensional 
analytical solutions (in both cases: homogeneous 
and non-homogeneous environment) for a system 
with cylindrical fin when the wall and the fin consist 
of materials, which have different thermal 
properties.  
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