
A Generation Approach of Transformation Code for Web

Interchanging Documents

LE-LE TANG, FUYANG PENG

Beijing Institute of System Engineering

P.O.Box 9702-19, Beijing 100101

CHINA

leletang@126.com

Abstract: - This paper describes a generation approach of transformation code for web interchanging documents.

This approach is based on model driven architecture and model transformation technology. We provide a model

weaving tool named QMTW to define mapping rules between XML documents. All these rules are stored in a

model named weaving model. A code generator is provided to read this weaving model and generate target

XSLT code. When mapping rules change, developer only needs to modify the weaving model and run the code

generator again. Our approach improves the quality of transformation code for web interchanging documents

and reduces the work of maintenance.

Key-words: - Model Transformation, Web Application, UML, Model Driven Architecture, XSLT

1. Introduction
Nowadays, many web systems use XML as the
interchanging format. In the process of data
collecting, transforming and mining, many
operations conforming to some semantics are
always added on these XML-based documents.
Under many circumstances, the results of these
operations are temporary and need not be stored
persistently. Therefore, web interchanging
documents are not collected and transformed by
traditional database technology. XSLT is always
used to do these works instead.
Transforming these XML-based data by XSLT is

an effective way, and supported by many tools.
However, writing an effective XSLT code requires
advanced programming skills and good
understanding of XML’s working mechanism. At
the same time, writing XSLT code by hand is an
elaborated, error-prone and hard-to-maintained
work. Researchers have realized the importance of
the XML technology and the need for automatic
transformation approaches[1].
Inspired by MDA[2] and model transformation

technology, we propose a model transformation

based approach to generate XSLT code. This
approach can define mapping rules between
different XML documents conveniently, and
generate executive XSLT code based on these rules.
It improves the quality and maintainability of XSLT
code, and makes the programmer’s work easier.
The remainder of this paper is organized as

follows. The next section introduces the related
works. In section 3, we describe the process of our
approach briefly. We provide a case study to
demonstrate every steps of this approach in details
in section 4. In the last section, we point out the
future work and give the conclusions.

2. Related Works
Now that many of us depend on Web-based systems,
they need to be reliable and perform well. To build
these systems, Web developers need a sound
methodology, a disciplined and repeatable process,
better development tools, and a set of good
guidelines. The emerging field of Web engineering
fulfills these needs[3]. In recent years, many
researchers in web engineering domain provide

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 188

model driven development approaches for
constructing web applications.
In [4], Piero Fraternali and Paolo Paolini describe

a methodology for the development of WWW
applications and a tool environment specifically
tailored for the methodology. The methodology and
the development environment are based upon
models and techniques already used in the
hypermedia, information systems, and software
engineering fields. An approach to support the
development of large-scale Web applications is
described in [5]. Large development efforts have to
be divided into a number of smaller tasks of
different kinds that can be performed by multiple
developers. They also implement a tool which
provides a variety of code generators and a
mechanism for checking whether view artifacts are
compliant with the model.
The methods mentioned above demonstrate how

to develop an entire web application, but pay little
attention to web interchanging documents. Our
approach solves the problem of how to generate
transformation code for web interchanging
documents.

3. Model Transformation Approach
We illustrate our model transformation approach for
XSLT code generation in Figure 1.

Figrue1 Model Transformation Approach

As illustrated in Figure 1, the approach has three
steps. First, we must get the source and target
conceptual model. Second, we define the mapping
rules. At last, we use the code generator to generate
the target XSLT code.

The first problem is how to construct the
conceptual model for XML documents. There are
three solutions for this problem: (i) adopt UML to
design XML schema; (ii) use an extended ER model
to design XML schema; (iii) use a special modeling
approach for XML—AOM(Asset Oriented
Modeling)[6]. Considering practicability, we choose
the UML as the modeling technique.
If source XML documents or target XML

documents have not XML schema, we can use UML
tool to build the conceptual models and generate the
XML schema. Otherwise, we can generate UML
models from XML schemas. Some tool such as
hyperModel[7] has the transformation ability
between UML models and XML schemas. In this
way, we can get the source and target model which
are UML class diagrams. Thus the web
interchanging XML documents conform to these
UML models.
The second step is to define the mapping rules

between source and target model by a model
weaving tool--QMTW and to store these rules into a
weaving model. Put the weaving model into a code
generator, we can get the target XSLT code.
Pay attention, the weaving model containing the

mapping rules can be stored as the artifact of our
approach. When the mapping rules change, we only
have to change the weaving model, and the XSLT
code can be generated automatically. Next section, a
case study is provided to demonstrate the details.

4. Case Study

4.1 Motivating Example
For example, a web bank system interchanges its
data with a web payment center. The conceptual
models of source and target data are illustrated in
Figure 2. The mapping rules are also included in this
figure.

-name:String -name:String

-age:Int

-id:Int

-balance:Double

-age:Int

-accountList:String

-accountSum:Double

Account

UserInfo

equalLink

equalLink

concatLink

sumLink

Web Bank System Payment Center

User

Figure 2 Source and Target Models

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 189

We can see from the figure that the bank system
includes several User objects which contain a name
and an age attribute. Every User object has at least
one Account object which contains an id and a
balance attribute. The payment center system
includes several UserInfo objects which contain
name, age, accountList(this attribute display all
available accounts belong to this user) and
accountSum(this attribute is the sum of all balances
in available accounts) attributes.

4.2 Defining Mapping Rules

We have proposed a model weaving tool QMTW
(QVT-Based Model Transformation Weaving
Framework) to define model transformation rules.
Model weaving is a special model transformation
technique which defines the mapping rules as typed
links and generates model transformation code for
these rules. In another word, model weaving is a
code generator of model transformation code.

The mapping rules in QMTW are represented by
link, every link defines the relation between source
model element and target model element. A link
contains three parts: source model element, target
model element and link type. Every link type has a
corresponding code fragment. OMTW provides a
link type library including many types which can be
selected by user. User can also add customize link
type into the library to fulfill new requirements.
By using QMTW, we define four rules shown in

Figure 2. The description of these rules is listed
below:
The value of name attribute in class User is equal

to the value of name attribute in class UserInfo;
The value of age attribute in class User is equal to

the value of age attribute in class UserInfo;
The value of accountList attribute in class UseInfo

is equal to the concatenation of all the value of id
attribute of Account in a User while removing repeat
values (if exist) and adding a ‘/’ between every two
values.
The value of sum attribute in class UserInfo is

equal to the addition of all the value of balance
attribute of Account in a User.
These rules are represented by four links in

QMTW. The link types are equalLink, concatLink
and sumLink separately.
Source model, target model and all links are

stored in a weaving model which is the input of code
generator.

4.3 Code Generation

There are two steps in code generation process.
First, XSLT code framework including XSL
element and XSL attribute is generated according to

the target model. This work is completed by
framework code generator. The values of XSL
attributes are computed by calling special XSLT
templates which will be generated in next step. The
algorithm of framework code generator is as
follows. Considering simplicity, we only give the
algorithm for one package.

From the framework code we can see that the XSL

element and XSL attribute define the objects and
attributes of the target model. But to get the value of
attributes, we need to call some XSL templates such
as $classA_attributeA_linkA template. The bodies
of these templates will be generated and added in the
second step.
The second step is to scan all mapping rules in the

weaving model and to construct the bodies of XSL
templates. Every link type has a code fragment
stored in the link type library. Code generator picks
out these code fragments and configures their
parameters to build entire XSL templates. For
example, the code fragment of sumLink is listed as
follows:

<xsl:template name="$sumLink_name ">
<xsl:value-of
select="sum($srcClass/@$srcAttribute)"/>
</xsl:template>

Void GenerateClassCode(Class class)
{
For every Class = classA in Package{
Write <xsl:element> into target code;
For every Attribute = attributeA in classA{
 If attributeA is a primitive type {
 Write <xsl:attrivute> into target code;
 Add other params into code;
 If a rule = linkA is linked with attributeA
 Add <xsl:call-template name=

”$classA_attributeA_linkA”/>
 Write </xsl:attribute> into target code;
 }
 If attributeA is a object of classB
 GenerateClassCode(classB);
}
For every associated Class = classC{
 If classC is aggregated by classA
 GeneratedClassCode(classC);
 If classC is navigated by classA
 Write a <xsl:ref> into target code;
 Add other params into code;
 Write a </xsl:ref> into target code;
}
Write </xsl:element> into target code;

}

}

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 190

By inputting concrete parameters into
$sumLink_name, $srcClass and $srcAttribute, we
can get the XSL template for sumLink. After all
these templates are completed and added into the
code framework generated in the first step, then we
can get the final XSLT code.

4.4 Executing Transformation

When the code generation work is completed, the
XSLT code then can be put in any place user wanted
to transform source XML documents into target
XML documents.

We construct a source XML document to verify
whether the generated XSLT code can work or not.
The source document is as follows:

<User name="TangLeLe" age="28">
<Account id="1001" balance="122.0"/>
<Account id="1002" balance="123.0"/>
<Account id="1003" balance="144.0"/>

</User>

After the transformation work, we get the

document listed below:
<UserInfo name="28" age="TangLeLe"
accountList="1001/1002/1003"
sum="389">
</UserInfo>

By checking the relations between source and
target document, we can see that they conform to the
mapping rules defined in section 4.2.

5. Conclusions and Future Works

The contributions of this paper are: (i) we provide a
special model transformation tool which can define
mapping rules between web interchanging
documents conveniently. (ii) XSLT code can be
generated automatically according to mapping rules.
It reduces the burden of programmer and improves
the quality of code. (iii) When mapping rules
change, user only needs to modify the weaving
model, and then new XSLT code could be generated
automatically. In this way, the maintainability of
code is improved.
But there are still some limitations in our

approach. (i) Some web interchanging documents
can not be represented by XML schema. In this case,
our approach can not be applied on these documents.
(ii) Since the description ability of UML is a little
weak, some sophisticated XML schema can not be
modeled with UML.
In the future work, we will extend UML to fulfill

more sophisticated XML schema. We will find the
common data structures used in web interchanging
documents and summarize some patterns to
facilitate the work of modeling and code generating.

References:
[1] G.L. Song, K. Zhang, J. Kong. Automatic
Generation of Transformation Rules for

Model Management. In: VL/HCC’05

Workshop on Visual Modeling for Software

Intensive Systems. Dallas, USA 2005
[2] OMG. MDA Guide Version 1.0.1. 12th

June; omg/2003-06-01] 2003. Available from:
http://www.omg.org/cgi-bin/apps/doc?formal
/03-06-01.pdf.

[3] Murugesan, Athula Ginige and San, Web
Engineering: An Introduction. Multimedia,
IEEE,Jan-Mar 2001. Vol.8(1): p. 14-18.

[4] Piero Fraternali, Paolo Paolini,
Model-driven development of Web

applications: the AutoWeb system. ACM
Transactions on Information Systems (TOIS)
October 2000. Vol.18(4): p. 323 - 382.

[5] H. Tai , K. Mitsui , T. Nerome , M. Abe , K.
Ono , M. Hori, Model-driven development of
large-scale web applications. IBM Journal of
Research and
Development,September/November 2004.
Vol.48(5/6): p. 797 - 809.

[6] Asset Oriented Modeling. Available from:
http://www.aomodeling.org/.

[7] hyperModel. Available from:
http://www.xmlmodeling.com/hyperModel/.

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 191

	Text4:

