
Architectural Design of a Component-Based

Application Integration Framework

FUYANG PENG, LELE TANG, XIAOQING WANG

Beijing Institute of Systems Engineering

P. O. Box 9702-19, Beijing 100101

CHINA

fuyang_peng@sina.com

Abstract: - Traditional application integration techniques have their problems. Some tools are too complex and

vendor-specific, some integration approaches are very ad hoc so that integration developers have a lot of work to

do for each component application to be integrated into, and the process is difficult to control. In this paper, we

present a component based lightweight application integration framework which is extensible, free from the

drawbacks of traditional integration techniques, provides an extensible, reusable and dependable application

integration environment for integration developers.

Key-Words: - application integration framework, component-based method, design pattern, enterprise

application integration

1 Introduction
The goal of application integration is to integrate the
data resources, application systems and business
processes within an organization or across
organizations to meet new requirements of new
application environments, to manage the evolution
of component systems, to eliminate redundancy and
possible bottleneck, and to resolve mismatches
among the component systems [1].

Two main issues are related to application
integration [2],[3]. One is how to design a software
architectural framework that provides inherent
capabilities of and sound development-time/
runtime support for information systems
interoperability and integration. The other is how to
integrate legacy applications into new software
infrastructure or business environment via such
techniques as adaptor, mediator and gateway. This is
important for the integration and transition of legacy
systems.

There exist lots of differences between different
integration techniques and tools in terms of
integration capabilities. Some are simple and
surface, others are very specific, still others are
rather comprehensive and powerful.

No matter which is, traditional application
integration techniques have their problems [2]. For
example, some tools are too complex and
vendor-specific, some integration approaches are
very ad hoc so that integration developers have a lot
of work to do for each component application to be
integrated into, and the process is difficult to control.
Our goal is, under the guidance of modern software

development methodologies, to develop a
component based lightweight application integration
framework which is extensible, free from the
mentioned drawbacks of traditional integration
techniques, provides an extensible, reusable and
dependable application integration environment for
integration developers.

2 Architectural Design of Plumbersoft

2.1 Design Decision
Component-based method and technology is
adopted for our message-centric[4] application
integration framework called Plumbersoft because
of its object-orientation, dynamic loading,
component configurability, dynamic typing,
serialization and persistence and other features [5,6].
As a result, Plumbersoft is flexible, extensible,
reusable and easy to customize. Using Plumbersoft,
development time of new integration
components(ICs) is greatly reduced, thus integration
development efficiency is improved.

2.2 Architecture of Plumbersoft
As we just mentioned, Plumbersoft is a
component-based application integration
framework. It consists of source binding IC, sink
binding IC, transformation IC, message routing
controller and system services such as monitor,
logging and exception handling. Within the

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 381

framework, ICs can be organized into a lattice-like
net called p-lattice according to the configuration
file provided, standard XML message is used for
communication between ICs and message routing
controller.

The source binding ICs act as message producers.
They implement binding with the to-be-integrated
applications, manage the sessions, accept the
incoming message and transform it into the common
message format, and finally dispatch it into the
next-stage IC(s) connected to them via the message
routing controller.

Transformation ICs can take some transforming
actions to the incoming messages, such as
modifying, enriching, filtering and aligning. They
have their own abilities. They can be configured.
The transformed messages are feed, via the message
routing controller, into the next transformation IC or
finally into the sink binding IC.
The sink binding ICs are responsible for the binding
with the to-be-integrated applications, manage the
sessions, transform the incoming message into the

external message format or appropriate APIs
recognizable by the destination system.
The message routing controller is the key
component of Plumbersoft. It selects the routes and
controls the transfer of messages. It also coordinates
the work of the ICs in the system. Its main functions
are:

1. To startup the source binding IC threads and
remote controlling thread according to the
configuration file.

2. To synchronize with the source binding IC
threads and remote controlling thread.

3. To implement global transaction control.
4. To implement the callback registering and

triggering mechanism.
5. To implement message routing and control.
6. To manage the ICs and their connections.
More than one p-lattices may exist within an

instance of the integration framework. The ICs in
the p-lattice may arrange into a linear form or into a
more general net-like form. The p-lattices can be
executed concurrently.

 : Source

 : Controller

 : PipelineController

 : Sink(Pipe) : Main

1.1. sourceProcess()
1.1.1. processMessage(dobs,...)

1.1.1.1. new Message(DataObject,...)

1.1.1.2. processMessage(Message,from)

1.1.1.2.1. processMessage(Message,to)

1.1.1.2.1.1. processMessage(Message)

1.1.1.2.1.1.1. processMessage(Message,from)

1. run()

Fig. 1. Activity diagram of the main components in Plumbersoft

Fig.1 is the activity diagram of the main
components in Plumbersoft. It is briefly described as
follows.

(1) Source binding IC reads into the data objects
and encapsulated them into internal common
message format.

(2) Source binding IC invokes the message
processing method of the message routing controller
with the arguments of message itself and the source
of the message.

(3) Message routing controller searches for the
transformation ICs or the sink binding ICs directly
connected to this IC and send the message to these
destination ICs via the pipeline controller.

(4) Pipeline controller simply invokes the
message processing methods of the destination

ICs.
 Depending on the type of the destination IC, there

are two cases for further message processing.
Case a. if the destination IC is a transformation IC,

message is processed as follows.
(5) Invoke transformDataObjects method to take

the appropriate transformation to the data objects in
the message and form new data objects.
(6) Create new message frame to store the new

data objects and push it into message stack.
(7) Delegate the new message to the message

routing controller.
(8) Invoke the postMessage method to do some

postprocessing.
(9) Pop out the message frame pushed by current

IC.

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 382

Case b. if the destination IC is a sink IC, message
processing is much simpler as following.

(5′) Pop out the message frame from the message
stack and read out the data objects. Perform the
functions indicated by the message with the help of the
destination application’s API, such as write the data
into a designated file, write the data into a socket or a
database system.

2.3 The Use of Architectural Framework and

Design Patterns
From the viewpoint of architectural framework,

Plumbersoft is an extensible lightweight
container[7,8]. We have adopted many design patterns
in our design, such as IoC and dependency injection,
callback, configurable component, interceptor and
singleton[9,10]. All these make Plumbersoft have the
following desirable features.

1. The integration framework provides a common
methodology and tool for legacy application
integration and adaptor development. The framework
is flexible, reusable and customizable.

2. The message routing controller, as a container,
manages the life cycle of the ICs as well as organizes
the ICs into a general p-lattice structure. Furthermore
the p-lattices can be executed concurrently. This makes
it possible for the complex integration development
process to be resolved in a component-based way.
Various types of ICs can be developed and categorized.
Selected ICs can be configured, customized and
combined into flexible work flows for integration
purpose.

3. The services in the framework container, such as
global transaction support, secure message facility,
exception handling, logging, and remote monitoring,
make integration more dependable.

3 Conclusions
We have finished the design and implementation

of a prototype of Plumbersoft. We have used the
prototype to achieve integration of database
applications, messaging applications, file-based
applications and socket-based applications.
Results validate our design. We are taking more
experiments, integrating non-Java applications
and web services [11]. We are also investigate the

possibility of adapting Plumbersoft integration
framework to a web service based framework like
ESB [12,13].

References:

[1] Rahul Sharma, Beth Stearns and Tony Ng,
J2EE Connector Architecture and
Enterprise Application Integration,
Addison Wesley, 2001.

[2] Parker Shi, Suketu Gandhi, “Enterprise
Application Integration”, Centre for
Technology Innovation, vol.2 No.3, 2001.

[3] Jeffrey C. Lutz, “EAI architectural
patterns”, eAI Journal, March 2000,
pp.64-73.

[4] Cape Clear Software, “Service-Centric vs.
Message-Centric ESBs”, CPV-DOC-3066,
2005.

[5] S. D. Halloway, Component Development
for the Java Platform, Addison-Wesley,
2002.

[6] Markus Völter, “PluggableComponent – A
Pattern for Interactive System
Configuration”, Proc. EuroPLoP '99, 1999.

[7] Martin Fowler, “Inversion of Control
Containers and the Dependency Injection
pattern”, http://www.martinfowler.com

[8] “PicoContainer 1.2 documentation”,
http://www.picocontainer.org.

[9] Erich Gamma, et al. Design Patterns:
Elements of Reusable Object-oriented
Software, Addison Wesley Longman, Inc,
1998.

[10] Douglas Schmidt, et al., Pattern-Oriented
Software Architecture—Patterns for
Concurrent and Networked Objects,
Volume 2, John Wiley & Sons, Ltd, 2000.

[11] Steve Vinoski, Integration with Web
Service, IEEE Internet Computing,
November/ December 2003, pp 75-77.

[12] Dave Chappell, Enterprise Service Bus,
O'Reilly, June 2004.

[13] Mark Endrei, et al., “Patterns:
Service-Oriented Architecture and Web
Services”, IBM, April 2004.

6th WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain, December 14-16, 2007 383

	Text4:

