
Parallelization of Prime Number Generation Using Message Passing

Interface

IZZATDIN AZIZ, NAZLEENI HARON, LOW TAN JUNG, WAN RAHAYA WAN DAGANG

Department of Computer and Information Sciences

Universiti Teknologi Petronas

31750 Tronoh, Perak

MALAYSIA

{izzatdin, nazleeni, lowtanjung}@petronas.com.my, wan.rahaya@gmail.com

Abstract:-. In this research, we proposed a parallel processing algorithm that runs on cluster architecture

suitable for prime number generation. The proposed approach is meant to decrease computational cost and

accelerate the prime number generation process. Several experimental results are shown to demonstrate the

viability of our work.

Key-Words: - Prime number generation, parallel processing, cluster architecture, MPI, cryptography

1 Introduction
Prime numbers has stimulated much of interest in

mathematical field or in security field due to the

prevalence of RSA encryption schemes.

Cryptography often uses large prime numbers to

produce cryptographic keys which are used to

encipher and decipher data. It has been identified

that a computationally large prime number is likely

to be a cryptographically strong prime. However, as

the length of the cryptographic key values increases,

this will result in the increased amount of computer

processing power required to create a new

cryptographic key pair. In particular, the

performance issue is related to time and processing

power required for prime number generation.

Prime number generation comprises of

processing steps in searching for and verifying large

prime numbers for use in cryptographic keys. This is

actually a pertinent problem in public key

cryptography scheme, since increasing the length of

key to enhance the security level would results in a

decrease in performance of a prime number

generation system.

Another trade off resulting from using large

prime numbers is pertaining to the primality test.

Primality test is the intrinsic part of prime number

generation and yet the most computational intensive

sub process. It has also been proven that testing the

primality of large candidates is very computationally

intensive.

Apart from that, the advent of parallel

computing or processing has invited many interests

to apply parallel algorithms in a number of areas.

This is because it has been proven that using parallel

processing can substantially increase the processing

speed. In this paper, we present a parallel processing

approach in cluster architecture for prime number

generation that would provide improved

performance in generating cryptographic keys.

2 Related Work
Despite the importance of prime number generation

for cryptographic schemes, it is still scarcely

investigated and real life implementations are of

rather poor performance [1]. However, a few

approaches do exist in order to efficiently generate

prime numbers [1-5]. Maurer proposed an

algorithm to generate provable prime numbers that

fulfill security constraints without increasing the

expecting running time [2]. An improvement has

been made to Maurer’s algorithm by Brandt et al to

further speed up the prime number generation [3].

Apart from that, the proposed work has also

included a few ways for further savings in prime

number generation [3]. Joye et al has presented an

efficient prime number generation scheme that

allows fast implementation on cryptographic smart

card [1]. Besides that, Cheung et al has originated a

scalable architecture to further speed up the prime

number validation process at reduced hardware cost

[4]. All of these researches however, were focusing

on processing the algorithm sequentially. It has been

proven that tasks accomplished through parallel

computation results in faster execution as compared

to a computational processes that runs sequentially

[9]. Tan et al has designed a parallel pseudo-random

generator using Message Passing Interface (MPI)

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 93

[5]. This work is almost similar to ours but with

different emphasis. The prime numbers generated

are to be used for Monte Carlo simulations and not

cryptography. Furthermore, considerable progresses

have been made in order to develop high-

performance asymmetric key cryptography schemes

using approaches such as the use of high-end

computing hardware [6, 7, and 8].

3 System Model

3.1 Experimental Setup
The experimental cluster platform for performance

comprised of 20 SGI machines. Each of the

machines consists of off-the-shelf Intel i386 based

dual P3-733MHz processors with 512MB memory

Silicon Graphics 330 Visual Workstations. These

machines are connected to a Fast Ethernet 100Mbps

switch. The head node performs as master node with

multiple network interfaces [10]. Although these

machines are considered to be superseded in terms

of hardware and performance as compared to the

latest version of high performance computers,

what’s important in this research is the

parallelization of the algorithm and how jobs are

disseminated among processors.

3.2 Number Generation
In order to first generate the number, a random seed

is picked and input into the program. The choice of

seed is crucial to the success of this generator as it

has to be as random as possible. Otherwise anyone

who uses the same random function would be

capable of generating the primes, thus beats the

purpose of having strong primes.

3.3 Primality Test
We have selected trial division algorithm as the core

for primality testing. This algorithm is based on a

given composite integer n, trial division consists of

trial-dividing n by every prime number less than or

equal to n . If a number is found which divides

evenly into n, that number is a factor of n.

3.4 Parallel Approach
Once a random number have been generated, master

node will create a table of dynamic 2D array, which

later will be populated with odd numbers. As shown

in Fig.1, a pointer-to-pointer variable **table in

master, will points to an array of pointers that

subsequently points to a number of rows. This will

result in a table of dynamic 2D array. After the table

of dynamic 2D array is created, master will then

initialize the first row of the table only.

Fig.1 Master creates a dynamic 2D

array to be populated with odd numbers

The parallel segment begins when master

node broadcasts the row[0] to all nodes by using

MPI_Bcast. This row[0] will be used by each node

to continue populating the rest of the rows of the

table with odd numbers. Master node will then

equally divide n-1 number of rows left that is yet to

be populated by number of nodes available in the

grid cluster. Each node will be given an equal

number of rows to be populated with odd numbers.

This could be achieved by using MPI_Send. A

visual representation of this idea is depicted in Fig.2.

Fig.2. Master sends an equal size of

row to each slave

Each node will receive n numbers of rows to be

populated with odd numbers. This is where the

parallel process takes place. Each node will process

each row given concurrently. Each node will first

populate the rows with odd numbers. Then they will

filter out for prime numbers using the primality test

chosen. The odd prime numbers will remain in the

rows but those that are not will be assigned to

NULL. Each populated row are then returned to

master node, whom then randomly pick for three

distinct primes for the value of p,q, and public key e

of the cryptographic scheme.

 For an example, if there are 4 processors

available to execute the above tasks, and there are

1200 rows need to be populated with prime

numbers, each slave will be given 300 rows to be

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 94

processed. The overall procedure is depicted in

Fig.3.

Fig.3.Example of assigning 1200 rows

to 4 processors (slaves)

Processor 0 will process row(1) up to

row(299), processor 1 will be processing row(300)

up to row(599), processor 2 will be processing

row(600) up to row(899) and lastly processor 3 will

be processing row(900) up to the last row,

row(1199).

After each node returns the populated rows

to master node, it will then pick randomly prime

numbers to be assigned as the value of p, q, and e.

These values can later be used for encryption and

decryption part of a cryptosystem algorithm. It is to

be reminded that the parallel process that takes place

in the whole program is only on the prime number

generation.

4 Parallel Algorithm
The algorithm of the parallel program is as follows:

Start

Master creates a table of odd numbers and

initialized row [0] only

Master broadcasts row [0] to all slaves

Master sends a number of rows to each slave

Each slave will receive an initialized

row from master

Each slave will populate row prime

numbers

Each slave will return populated row to

Master

Master waits for results from slaves

Master receives populated rows from

each slave.

Master checks unpopulated rows

 If maxRow > 0

 Master sends unpopulated row

to slave

Master picks prime numbers randomly

Prompt to select program option

Switch (method)

 Case 1: prompt to enter a

 value greater than 10000

 If value > 10000, generate key

 primes

 Else, Exit program

 Case 3: open file and decrypt

 Case 4: exit program

 End

End

5 Evaluation
Table 1, shows the execution time of

running the parallel program on single and more

computing nodes. From the results, it can be inferred

that running the algorithm in parallel mode has

accelerated the prime number generation process.

However, it seems like there is a noticeable increase

in processing time when the program is running

more than 3 nodes. The execution time has recorded

to be higher when more nodes participated in the

generation process. This may be caused by the

network latency during the distribution of the tasks,

which leads to the increased of execution time taken

for the communication between nodes.

Table 1: Comparison of Execution

Time for Different Number of Nodes.
Number of nodes Execution Time (ms)

1 7.850

3 0.039

5 0.043

10 0.053

30 0.093

Fig.4 shows the performance measurement

using MPI_GATHER tested on 15 nodes. This

figure was captured using the MPICH Jumpshot4

tool to evaluate the algorithm usage of MPI libraries.

The numbers plotted shows the amount of time

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 95

taken for each node to send back the prime numbers

discovered back to the master node.

0

0
.0
3
5
9

0
.0
3
5
4

0
.0
3
2
5

0
.0
3
1
8

0
.0
2
9
3

0
.0
3
0
3

0
.0
2
7
3

0
.0
2
7
3

0
.0
2
6
4

0
.0
2
5
4

0
.0
2
5
3

0
.0
2
4
7

0
.0
1
4
2

0
.0
1
3
7

0
.0
3
8
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Node

Time (Seconds)

Fig.4. Time taken for MPI_BCAST and

MPI_GATHER running on 15 nodes.

From the figure, it is observed that the algorithm

gather was massive for the first node and

deteriorated as it approached the last node. This may

due to the frequent prime numbers discovered at the

beginning of the number series and becomes scarce

as the numbers becomes larger towards the end. This

will prove that the relative frequency of occurrence

of prime numbers decreases with size of the number

which result in lesser prime numbers were sent back

to master node by later nodes.

6 Conclusion
We have proposed a parallel approach for prime

number generation in order to accelerate the process.

The parallelism and the cluster architecture of this

approach have been tested with large prime

numbers. Results have demonstrated that

improvement can be obtained if parallel approach is

deployed. However, further improvements can be

made that include:

(1) Use other primality test that is more significant

or feasible for large prime number generation such

as Rabin-Miller algorithm.

 (2) Use other random number generation that can

produce random numbers with less computation yet

provides higher security level.

References:

[1] M. Joye, P. Paillier and S. Vaudenay,

Efficient Generation of Prime Numbers,

Cryptographic Hardware and Embedded

Systems, vol. 1965 of Lecture Notes in

Computer Science, pp. 340-354, Springer-

Verlag, 2000.

[2] Maurer, Fast Generation of Prime Numbers

and Secure Public-Key Cryptographic

Parameters, Journal of Cryptology, vol.8 no.3

(1995), 123-156.

[3] J.Brandt, I. Damgard, and P. Landrock.

Speeding up prime number generation. In

Advances in Cryptology -- ASIACRYPT '91,

vol. 739 of Lecture Notes in Computer

Science, pp. 440--449, Springer-Verlag,

1991.

[4] Cheung, R.C.C., Brown, A., Luk, W.,

Cheung, P.Y.K., A Scalable Hardware

Architecture for Prime Number Validation,

IEEE International Conference on Field-

Programmable Technology, 2004. pp. 177-

184, 6-8 Dec. 2004.

[5] Tan, C. J. and Blais, J. A. PLFG: A Highly

Scalable Parallel Pseudo-random Number

Generator for Monte Carlo Simulations. 8th

international Conference on High-

Performance Computing and Networking

(May 08 - 10, 2000). Lecture Notes In

Computer Science, vol. 1823. Springer-

Verlag, London, 127-135.

[6] Agus Setiawan, David Adiutama, Julius

Liman, Akshay Luther and Rajkumar Buyya,

GridCrypt : High Performance Symmetric

Key Cryptography using Enteprise Grids. 5th

International Conference on Parallel and

Distributed Computing, Applications and

Technologies (PDCAT 200) , Singapore.

Springer Verlag Publications (LNCS Series),

Berlin, Germany. December 8-10, 2004.

[7] Praveen Dongara, T. N. Vijaykumar,

Accelerating Private-key cryptography via

Multithreading on Symmetric

Multiprocessors. In Proceedings of the IEEE

International Symposium on Performance

Analysis of Systems and Software (ISPASS),

March 2003.

[8] Jerome Burke, John McDonald, Todd

Austin, Architectural Support for Fast

Symmetric-Key Cryptography. Proc. ACM

Ninth Int'l Conf. Architectural Support for

Programming Languages and Operating

Systems (ASPLOS-IX), Nov. 2000.

 [9] Selim G Aki, Stefan D Bruda, Improving A

Solution's Quality Through Parallel

Processing. The Journal of Supercomputing

archive.Volume 19 , Issue 2 (June 2001).

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 96

[10] Dani Adhipta, Izzatdin Bin Abdul Aziz,

Low Tan Jung, Nazleeni Binti Haron

.Performance Evaluation on Hybrid Cluster:

The Integration of Beowulf and Single

System Image, The 2nd Information and

Communication Technology Seminar

(ICTS),Jakarta. August 2006.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 97

	Text4:

