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Abstract: A fundamental solution for the plane problems of linear elasticity is introduced. The reciprocal identity,
gives an integral equation, is written between the fundamental solution and the problem to be solved. This integral
equation has been solved by boundary element and algorithm of the BEM solution is explained on a sample, mixed
boundary-value problem. The formulation is valid for the first, second and mixed boundary-value problems. The
formulation does not involve any singularity.
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1 Introduction
In the presented study, a two-dimensional mixed
boundary value problem is solved by boundary ele-
ment method for a linear, homogeneous and isotropic
material. In the mixed boundary value problem, the
surface tractions were known on a part of the bound-
ary while displacement components on the other part.
Reciprocity theorem is the starting point of the bound-
ary element method. It is known that the reciprocal
theorem gives an integral equation which relates two
different elastostatic states of the same body. The first
elastostatic state in the expression of the reciprocal
theorem, represents the problem to be solved, whereas
the second one expresses the displacement and stress
field in an unbounded medium due to an application
of a point load. The second state is also named as a
fundamental solution. The aim of the boundary el-
ement method is to reduce the problem to a system
of linear algebraic equations. Boundary is idealized
as a collection of segments. End points of these seg-
ments are named as nodal points. On each segment,
any unknown function is selected as a certain func-
tion passing from the end points. Then the unknowns
of the problem are reduced to the values of the dis-
placement/stress components at nodal points. 2N in-
tegral equations, each one of them corresponding to
a singular loading at a nodal point in one direction
can be written. In these integral equations, integrals
over the boundary are transformed to the summation
of the integrals over the segments. The construc-
tion and the unknowns of this system are different for
the first, second and mixed boundary-value problems.
There is no problem for the first boundary-value prob-

lems because it is easy to place the dominant terms
on the main diagonal in the construction of the co-
efficient matrix of the system of the linear algebraic
equations mentioned above. For a mixed boundary
value problem, the order of the equations and the un-
knowns should be arranged so that dominant terms are
on the main diagonal of the coefficients matrix. The
number of unknowns is twice times of the number of
nodal points for the first and second boundary value-
problems, but in the mixed boundary value problem, it
is less than the twice of number of nodal points. In the
boundary points on which the values of surface trac-
tion in one side and displacement on the other side are
known, an additional equation can be written between
the components of the unknown surface traction vec-
tor due to symmetry of stress tensor. The construction
of the system and the unknowns have been explained
on a sample, mixed boundary-value problem which is
a thick and wide concrete column subjected to a sin-
gular and eccentric normal force. The displacement
components on a part of the boundary and the surface
tractions on a second part of the boundary have been
determined. Results have been compared by finite el-
ement solution of the same problem.

2 Basic Formulation
The definition of an elastostatic state is summarized
below:
A region B with interior volume V and boundary S
is considered. The ordered triple S[u(x), τ (x),f (x)]
defines an elastostatic state on V , where V is the clo-
sure of V , u(x) is displacement vector and x denote
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the position vector of a point, τ (x) is the stress tensor
and f denotes body force. They satisfy the following
relations:

τkj,j + fi = 0 (1)

τij = λδijεkk + 2µεij (2)

εij =
1
2
(
∂ui
∂xj

+
∂uj
∂xi

) (3)

where εij is the strain tensor, δij represents Kro-
necker’s delta, λ and µ indicate Lamé’s elastic coeffi-
cients having the following relation between them

λ

µ
=

2ν
1− 2ν

here ν indicates the Poisson’s ratio.
The expression of the reciprocity theorem

which is written between two elastostatic states
S?[u?(x), τ ?(x),f?(x)] and S[u(x), τ (x),f(x)]
of the same body is [1,2,3]∫

S
T · u?dS +

∫
V
f · u? dV

=
∫
S
T ? · u dS +

∫
V
f? · u dV (4)

Ti = τij nj , T ?i = τ?ij nj (5)

T and T ? are surface traction vectors in two states,
respectively, n is the outward normal of the sur-
face S. It will be considered that an elasto-
static state S[u(x), τ (x),f(x)] represents a prob-
lem to be solved on the region B of volume
V bounded by surface S. This problem can
be a first, second or mixed boundary-value prob-
lem [4]. The body force f will be neglected
in the formulation. The second elastostatic state
S?[u?(x), τ ?(x),f?(x)], represents the displace-
ment and stress fields in an unbounded elastic medium
due to a singular point load f?. The elastostatic state
Sk[uk(x,y), τ k(x,y),fk(x,y], which have been
given here, will be used as S?[u?(x), τ ?(x),f?(x)]
in Eq. (5) for the solutions of plane elasticity prob-
lems.

3 A Singular Elastostatic State for
the Solutions of Plane Elasticity
Problems

A body force in an infinite elastic medium having the
same material with the problem to be solved is defined
as

fk(x,y) = δ(x− y) ek (6)

where x and y represent the position vectors of an
arbitrary point and a specific point of volume V , re-
spectively. ek (k = 1, 2) represents a base vector in
Cartesian coordinates. δ(x−y) is a generalized func-
tion, which is known as Dirac delta function satisfying
following property for an infinite volume V :∫

V
h(x)δ(x− y) dVx = h(y) for y ∈ V

= 0 for y /∈ V (7)

The displacement field uk(x,y) due to this body
force can be represented as

uki (x,y) =

− 1
8πµo(1− ν)

[(3− 4ν)δikln(r)− x′kx
′
i

r2
] (8)

where

x′k = xk − yk , r =
√
x′ix
′
i (9)

Using Eq. (3), the (ij)th component of strain tensor
can be written as

εkij(x,y) = − 1
8πµo(1− ν)

[
− δij

x′k
r2

+

(1− 2ν)[δik
x′j
r2

+ δjk
x′i
r2

] + 2
x′kx

′
ix
′
j

r4

]
(10)

And substituting Eq. (10) in Eq. (2), the (ij)th com-
ponent of the stress tensor, τ k(x,y), can also be ob-
tained as

τkij(x,y) = − 1
4π(1− ν)

[
(1− 2ν)[− x′k

r2
δij +

x′j
r2
δik

+
x′i
r2
δkj ] + 2

x′ix
′
jx
′
k

r4

]
(11)

The expression of reciprocal identity (Eq. (4))
which is written between S[u(x), τ (x),f(x)] and
Sk[uk(x,y), τ k(x,y),fk(x,y)] is reduced to the
following form:∫

S
uki (x,y).Ti(x)dS +

∫
V
uki (x,y).fi(x)dV

−
∫
S
T ki (x,y).ui(x)dS (12)

=

{
uk(y) (y ∈ V )
0 (y /∈ V )
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It is clear that if the boundary values of T (x) and
u(x) are known on the boundary S displacement vec-
tor at an inner point y can be determined using Eq.
(12). Besides the stress components can also be cal-
culated at this point using Eq. (12) and Eqs. (2) and
(3). This expression is given below:

τkl(y) =
∫
S
ukli (x,y).Ti(x)dSx

+
∫
V
ukli (x,y).fi(x)dVx

−
∫
S
τklij (x,y)nj .ui(x)dSx (13)

where

ukli (x,y) =
1

4π(1− ν)

[
(1− 2ν)[δik

x′l
r2

+ δil
x′k
r2
− δkl

x′i
r2

] + 2
x′ix
′
kx
′
l

r4

]
(14)

τklij (x,y) =
µ

2π(1− ν)

[
− (1− 4ν)δijδkl

1
r2

+ (1− 2ν)[δilδjk
1
r2

+ δikδjl
1
r2

]

+2(1− 2ν)[δij
x′kx

′
l

r4
+ δkl

x′ix
′
j

r4
]+

2ν[δik
x′jx
′
l

r4
+ δil

x′jx
′
k

r4
+ δjl

x′ix
′
k

r4
+ δjk

x′ix
′
l

r4
]

−8
x′ix
′
jx
′
kx
′
l

r6

]
(15)

4 Sample Problem
A vertical concrete column under an eccentrical nor-
mal force P = 1000 kN is considered acting at a
point y3 as shown in Fig. 1. The body force will be
neglected and the Poisson’s ratio, ν is 0.2. The prob-
lem is considered as a plane stress problem. The third
dimension of the column is 0.4m.

Fig. 1. Sample problem

Then body force f will be defined as

f = 0 (16)

The boundary conditions of the problem are as fol-
lows:
The surface tractions on the BCDKA part of the
boundary can be defined as

T = −Pδ(x− y3)e2 (17)

The displacement components on AB part of the
boundary can be written as

u1(x) = u2(x) = 0for x2 = 0, x1 ∈ [−0.3, 0.3] (18)

Since the problem is a plane problem, volume V and
surface S came out to be a planar area and the summa-
tion of plane lines, respectively. And the integrals over
boundary are reduced to line integrals. BCKA and AB
parts of the boundary are named as L1 and L2, respec-
tively. The surface tractions are known on L1 while
displacements are known on L2. Because of these,
problem is a mixed boundary-value problem. From
now on, S[u(x), τ (x),0)] will represent the problem
mentioned above. Substituting Eqs. (16) to (18) in
Eq. (12), the following two integral equations given
below are found:

−uk2(y3,y)P +
∫
L2

uki (x,y).Ti(x)dL2

−
∫
L1

T ki (x,y).ui(x, t)dL1 =


uk(y)(if y is an inner point of BCKAplane
region)
0 (if y is outside of BCKAplane region)

(k = 1, 2) (19)
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From now on, it will be considered that point y is
outside the planar surface. Then the unknowns of the
problem become the surface traction vector T (x) on
L2 and the displacement vector u(x) on L1. Besides
during integrations over the boundary, one must keep
the region on the left.
The procedure which will be used to solve these un-
knowns by Boundary Element Method has been ex-
plained below step by step:
The total boundary (L1 +L2) is idealized as a collec-
tion of line segments which named as boundary ele-
ments. If the number of these line segments is N, the
number of the end points, named as nodal points, is
also N. The starting and end points of Jth element are
x(J) and x(J+1). It is assumed that the variation of any
displacement or stress component on the Jth line seg-
ment has the following form.

uk(s) = uk(J)[1− s

l(J)
] + uk(J+1)[

s

l(J)
] (k = 1, 2) (20)

Tk(s) = Tk(J)[1− s

l(J)
] + Tk(J+1)[

s

l(J)
] (k = 1, 2) (21)

where s is the distance from x(J) to any point between
x(J) and x(J+1). After these definitions the unknowns
of the problem will be reduced to the nodal values of
displacement components on L1 and the surface trac-
tion vectors on L2. Both BC and KA lines have been
divided to N1 intervals while CK and AB divided to N2.
Then the number of the nodal points becomes N=2N1+2N2.
And point B is selected as the last nodal point having
the nod number N. After this selection the nodal num-
bers of C, K, A points become N1, (N1+N2) and (2N1+N2)
respectively, (Fig. 2).

Fig. 2. Nodal points

Depending upon these, the numbers of the un-
knowns and their order can be expressed as follows:
First (2N1+N2-1) unknowns are the horizontal displace-
ment components on nodal points of L1 starting from

u1(1). The following (2N1+N2-1) unknowns of the prob-
lem are the vertical displacement components on
nodal points L1 starting from u2(1). The third group
of unknowns will be the horizontal component of the
surface traction vector on nodal points onL2. The val-
ues of this quantity are equal to zero for this problem
at both A and B points. Then the first and last elements
of this group, having N2-1 unknowns, will be T1(2N1+N2+1)
and T1(2N1+2N2-1). The last group of N2+1 unknowns are
the vertical components of the surface traction vector
on nodal points onL2 starting from T2(2N1+N2). And the
total numbers of the unknowns becomes M = 4N1+4N2-2.
To determine these unknowns M equations is neces-
sary. Any of these equations can be written selecting
loading point y to be any nodal point x(I) and k being
equal to 1 or 2 in Eq. (19). But x(I) is a boundary
point of the planar region. Because of this an artificial
boundary including all of the line segments but not the
nodal point x(I), will be defined for a singular loading
on that nodal point. Around x(I) a small circular arc
Lε, with radius ε which leaves this nodal point outside
the region is added to complete this artificial boundary
[1,2], (Fig. 3).

Fig. 3. Artificial boundary

It is assumed that any displacement component is be-
ing equal to uk(x(I)) and any component of surface
traction vector is zero over this circular arc. As a con-
sequence of the definition of the artificial boundary,
when the loading point is x(I), right side of Eq. (19)
becomes zero because x(I) is not a point in the region
bounded by this artificial boundary. After necessary
calculations, the radius ε will be shrunk to the nodal
point x(I). The first assumption on circular arc, Lε,
means that any displacement component at a nodal
point is single valued. The second assumption is that
there is not a singular force acting at that nodal point.
Then if a singular force exists at a point of the bound-
ary, this point must not be selected as a nodal point
either. After these Eq. (19) takes the following form
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∫
L1

T ki (x,x(I)).ui(x)dL1+

lim
ε→0

(
∫
Lε

T ki (x,x(I)).ui(x(I))dLε)

−
∫
L2

uki (x,x(I)).Ti(x)dL2 = −Puk2(y3,x(I)) (22)

Where k represents the direction of the loading and
when k = 1 this direction coincides with the direction
of x1 axis while k = 2 indicates the loading direc-
tion to be the direction of x2 axis. As it is mentioned
above, M equations, each of these corresponding to a
singular loading at a nodal point in any direction, are
necessary. The order of these loadings is as below:

For the first (2N1+N2-1) equations, loading points are
the nodal points on L1 and the loading index k is one
and for the second (2N1+N2-1) equations, loading points
are the same but index k is two. For the following
(N2-1) equations, k is one and the loading points are the
nodal points on L2 except A and B points. And in
the last (N2+1) equations, loading points are the nodal
points on L2 either but including A and B points and
k is two.

After writing the necessary M equations and sub-
stituting Eqs. (5), (11), (20) and (21) in Eq. (22), the
following system of linear algebraic equations, given
in partitioned form, is obtained.

[
AM×(4N1+2N2-2),BM×(2N2)

]
XK×1 = C1×M (23)

Where A, B and C are constant matrices. The com-
ponents of these matrices are given as follows:

A(I , J) = δIJAD11(I)+

∫ l(J)

0
{τ1

1i(x,x(I))ni[1−
s

l(J)
]} ds

+
∫ l(J-1)

0
{τ1

1i(x,x(I))ni[
s

l(J-1)
]} ds

A(I , J+2N1+N2-1) = δIJAD12(I)+

∫ l(J)

0
{τ1

2i(x,x(I))ni[1−
s

l(J)
]} ds

+
∫ l(J−1)

0
{τ1

2i(x,x(I))ni[
s

l(J-1)
]} ds

A(I+2N1+N2-1 , J) = δIJAD21(I)+

∫ l(J)

0
{τ2

1i(x,x(I))ni[1−
s

l(J)
]} ds

+
∫ l(J−1)

0
{τ2

1i(x,x(I))ni[
s

l(J-1)
]} ds

A(I+2N1+N2-1 , J+2N1+N2-1) = δIJAD22(I)+

∫ l(J)

0
{τ2

2i(x,x(I))ni[1−
s

l(J)
]} ds+

∫ l(J-1)

0
{τ2

2i(x,x(I))ni[
s

l(J-1)
]} ds

for (I=1 to 2N1+N2-1, J=1 to 2N1+N2-1) (24)

where δIJ is the Kronecker’s delta. Additional matri-
cesAD11,AD12,AD21 andAD22 which corre-
spond to the second term in Eq. (22) can be expressed,
in terms of θ1 and θ2 angles are shown in Fig. (3), as

AD11(I) =
−1

4π(1− ν)
[2(1− ν)(θ2 − θ1)− n1(I)n2(I)

+n1(I-1)n2(I-1)]

AD12(I) = − 1
4π(1− ν)

[− n2(I)n2(I) + n2(I-1)n2(I-1)]

AD21(I) = − 1
4π(1− ν)

[n1(I)n1(I)− n1(I-1)n1(I-1)]

AD22(I) = − 1
4π(1− ν)

[2(1− ν)(θ2 − θ1)+

n1(I)n2(I)− n1(I-1)n2(I-1)] (25)

The remaining terms of the matrixA are given as fol-
lows:

A(I+4N1+2N-2 , J) =
∫ l(J)

0
{τ1

1i(x,x(I+2N1+N2))ni[1−
s

l(J)
]} ds
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+
∫ l(J-1)

0
{τ1

1i(x,x(I+2N1+N2))ni[
s

l(J-1)
]} ds

A(I+4N1+2N2-2 , J+2N1+N2-1) =

∫ l(J)

0
{τ1

2i(x,x(I+2N1+N2))ni[1−
s

l(J)
]} ds

+
∫ l(J-1)

0
{τ1

2i(x,x(I+2N1+N2))ni[
s

l(J-1)
]} ds

for (I=1 to N2-1, J=1 to 2N1+N2-1) (26)

A(I+4N1+3N2-3 , J) =
∫ l(J)

0
{τ2

1i(x,x(I+2N1+N2-1))ni[1−
s

l(J)
]} ds

+
∫ l(J-1)

0
{τ2

1i(x,x(I+2N1+N2-1))ni[
s

l(J-1)
]} ds

A(I+4N1+3N2-3 , J+2N1+N2-1) =

∫ l(J)

0
{τ2

2i(x,x(I+2N1+N2-1))ni[1−
s

l(J)
]} ds

+
∫ l(J-1)

0
{τ2

2i(x,x(I+2N1+N2-1))ni[
s

l(J-1)
]} ds

for (I=1 to N2+1, J=1 to 2N1+N2-1) (27)

The elements of the matrixB are

B(I, J) = −
∫ l(J+2N1+N2)

0
{u1

1(x,x(I))[1− s

l(J+2N1+N2)
]}ds

−
∫ l(J+2N1+N2-1)

0
{u1

1(x,x(I))[
s

l(J+2N1+N2-1)
]}ds

B(I+2N1+N2-1, J) = −
∫ l(J+2N1+N2)

0
{u2

1(x,x(I))[1− s

l(J+2N1+N2)
]

−
∫ l(J+2N1+N2-1)

0
{u2

1(x,x(I))[
s

l(J+2N1+N2-1)
]}ds

B(I, J+N2) = −
∫ l(J+2N1+N2)

0
{u1

2(x,x(I))[1− s

l(J+2N1+N2)
]}ds

−
∫ l(J+2N1+N2-1)

0
{u1

2(x,x(I))[
s

l(J+2N1+N2-1)
]}ds

B(I+2N1+N2-1, J+N2) = −
∫ l(J+2N1+N2)

0
{u2

2(x,x(I))[1− s

l(J+2N1+N2)
]

−
∫ l(J+2N1+N2-1)

0
{u2

2(x,x(I))[
s

l(J+2N1+N2-1)
]}ds

for (I=1 to 2N1+ N2-1, J=1 to N2-1) (28)

B(I, N2) = −
∫ l(2N1+N2)

0
{u1

2(x,x(I))[1− s

l(2N1+N2)
]}ds

B(I+2N1+N2-1, N2) = −
∫ l(2N1+N2)

0
{u2

2(x,x(I))[1− s

l(2N1+N2)
]}ds

B(I, 2N2) = −
∫ l(2N1+N2-1)

0
{u1

2(x,x(I))[
s

l(2N1+N2)
]}ds

B(I+2N1+N2-1, 2N2) = −
∫ l(2N1+2N2-1)

0
{u2

2(x,x(I))[
s

l(2N1+2N2-1)
]}ds

for (I=1 to 2N1+ N2-1) (29)

B(I+4N1+2N2-2, J) =

−
∫ l(2N1+N2+J)

0
{u1

1(x,x(I+2N1+N2))[1− s

l(J+2N1+N2)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u1

1(x,x(I+2N1+N2))[
s

l(J+2N1+N2-1)
]}ds

B(I+4N1+3N2-2, J) =

−
∫ l(2N1+N2+J)

0
{u2

1(x,x(I+2N1+N2))[1− s

l(J+2N1+N2)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u2

1(x,x(I+2N1+N2))[
s

l(J+2N1+N2-1)
]}ds

B(I+4N1+2N2-2, J+N2) =
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−
∫ l(2N1+N2+J)

0
{u1

2(x,x(I+2N1+N2))[1− s

l(J+2N1+N2)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u1

2(x,x(I+2N1+N2))[
s

l(J+2N1+N2-1)
]}ds

B(I+4N1+3N2-2, J+N2) =

−
∫ l(2N1+N2+J)

0
{u2

2(x,x(I+2N1+N2))[1− s

l(J+2N1+N2)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u2

2(x,x(I+2N1+N2))[
s

l(J+2N1+N2-1)
]}ds

for (I=1 to N2-1, J=1 to N2-1) (30)

B(I+4N1+2N2-2, N2) =

−
∫ l(2N1+N2)

0
{u1

2(x,x(I+2N1+N2))[1− s

l(2N1+N2)
]}ds

B(I+4N1+2N2-2, 2N2) =

−
∫ l(2N1+2N2-1)

0
{u1

2(x,x(I+2N1+N2))[
s

l(2N1+2N2-1)
]}ds

B(I+4N1+3N2-2, N2) =

−
∫ l(2N1+N2)

0
{u2

2(x,x(I+2N1+N2))[1− s

l(2N1+N2)
]}ds

B(I+4N1+3N2-2, 2N2) =

−
∫ l(2N1+2N2-1)

0
{u2

2(x,x(I+2N1+N2))[
s

l(2N1+2N2-1)
]}ds

for (I=1 to N2-1) (31)

B(4N1+3N2-2, J) =

−
∫ l(2N1+N2+J)

0
{u2

1(x,x(2N1+N2))[1− s

l(2N1+N2+J)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u2

1(x,x(2N1+N2))[
s

l(2N1+N2+J-1)
]}ds

B(4N1+3N2-2, J+N2) =

−
∫ l(2N1+N2+J)

0
{u2

2(x,x(2N1+N2))[1− s

l(2N1+N2+J)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u2

2(x,x(2N1+N2))[
s

l(2N1+N2+J-1)
]}ds

B(4N1+4N2-2, J) =

−
∫ l(2N1+N2+J)

0
{u2

1(x,x(2N1+2N2))[1− s

l(2N1+N2+J)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u2

1(x,x(2N1+2N2))[
s

l(2N1+N2+J-1)
]}ds

B(4N1+4N2-2, J+N2) =

−
∫ l(2N1+N2+J)

0
{u2

2(x,x(2N1+2N2))[1− s

l(2N1+N2+J)
]}ds

−
∫ l(2N1+N2+J-1)

0
{u2

2(x,x(2N1+2N2))[
s

l(2N1+N2+J-1)
]}ds

for (J=1 to N2-1) (32)

B(4N1+3N2-2, N2) =

−
∫ l(2N1+N2)

0
{u2

2(x,x(2N1+2N2))[1− s

l(2N1+N2)
]}ds (33)

B(4N1+3N2-2, 2N2) =

−
∫ l(2N1+2N2-1)

0
{u2

2(x,x(2N1+2N2))[
s

l(2N1+2N2-1)
]}ds (34)

B(4N1+4N2-2, N2) =

−
∫ l(2N1+N2+J)

0
{u2

1(x,x(2N1+2N2))[1− s

l(2N1+N2)
]}ds
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B(4N1+4N2-2, 2N2) =

−
∫ l(2N1+2N2-1)

0
{u2

2(x,x(2N1+2N2))[
s

l(2N1+2N2-1)
]}ds (35)

where

X(I) = u1(I) for I = 1, 2N1+N2-1

X(I+2N1+N2-1) = u2(I) for I = 1, 2N1+N2-1

X(I+4N1+2N2-2) = T1(I+2N1+N2) for I = 1, N2-1

X(I+4N1+3N2-2) = T2(I+2N1+N2-1) for I = 1, N2+1 (36)

C(I) = −P u1
2(y3,x(I))

C(I+2N1+N2-1) = −P u2
2(y3,x(I))

for I = 1, 2N1+N2-1 (37)

C(I+4N1+2N2-2) = −P u1
2(y3,x(I+2N1+N2))

for I = 1, N2-1 (38)

C(I+4N1+3N2-3) = −P u2
2(y3,x(I+2N1+N2-1))

for I = 1, N2+1 (39)

Performing the integrals, the entries ofA andB con-
stant matrices are calculated. But it must be indi-
cated that there are singular terms during calculation
of these integrals on the boundary elements having
the numbers I-1 and I for a loading point x(I). Inte-
grals over these elements are analytically calculated to
eliminate these singularities. The singularities which
arise in the integrals of uki (x,y) functions have the
type of

S1 = lim
s→0

s ln(s) (40)

which is zero. But the singularities arising in the inte-
grals of τkij(x,y) functions have the types of

S2 = lim
s→0

ln(s) (41)

but the singular terms having this form eliminates
each other during construction of the entries of the

matrix A. Then, a system of linear algebraic equa-
tions, whose unknowns have been defined in Eqs.
(36), is found.

The variations of the horizontal and vertical
components of surface traction and displacement
vectors are given in Figs. 4-11, for different lines.
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5 Conclusions and Discussion
A solution method of plane problems of linear elastic-
ity has been explained on a sample mixed-boundary
value problem for a specific material. The reciprocity
theorem provides a relation between displacements,
traction components and body forces for two load-
ing states of the same body and this relation gives a
boundary integral equation for unknown fields on the
boundary, complementary to the applied fields. This
integral equation has been solved numerically. The
selected approximations for unknowns are linear and
the integral equation is reduced to a system of alge-
braic equations. Of course, higher order polynomi-
als can be selected for a better approximation but it
must be emphasized that dominant terms of the co-
efficients matrix are heavily dependent to the constant
additional matricesAD11,AD12,AD21,AD22,
and the constant terms in approximation polynomi-
als while the effects of linear terms are secondary.
The same elastostatic problem has also been solved
by FEM (ANSYS 10.0) for checking.

Results are nearly the same for displacements
while element numbers are quite different. In BEM,
28 elements are used while 38 elements(PLANE82)
and 147 nodes in FEM. Relative errors are calculated
by equilibrium equations. And the relative errors are
0.003868 and 0.00947 in horizontal and vertical direc-
tions respectively for BEM while 0.0086 and 0.0122
in FEM. The increment of the element number slightly
affects the error after 28 in BEM. As an example, rela-
tive errors are 0.003499 and 0.00227 for 38 elements.
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