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Abstract: - In this paper, a real-time optimal control technique for control the liquid level and temperature in a
continuous stirred tank reactor (CSTR) in a pilot plant is proposed. The control system makes use of the
Pontryagin’s Minimum Principle and from a new back propagation algorithm of the final co-state error, allowing
the training of an adaptive fuzzy inference system to estimate values for the optimal co-state variables. These
strategies are employed for designing approximate optimal controllers via a control variable discretization. This
approach allows the on-line solution of the optimal control problem by training the system, which can be used on
a close-loop control strategy. The control system design is developed by minimizing a quadratic performance
index selected for the desired operating conditions. The control simulations results are presented.
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1 Introduction

Recent technological innovations have caused a
considerable interest in the study of dynamical
processes and its optimization. In industry, the aim of
control depends on economical reasons. In many
practical situations, an optimal controller can
minimize (or maximize) certain desired criterion and
satisfy some physical constraints at the same time.

During last decades, this problem was been widely
studied in theoretical and numerical perspectives. In
principle, there are two numerical classes of methods
to treat problems of optimal control, the first one
which uses the Pontryagin maximum (or minimum)
principle to derive the necessary conditions for the
optimizer. These conditions take the form of a
multipoint boundary-value problem for the state and
the additional adjoint equation. The second class
includes the so-called direct methods. These methods
have in common in the first step a discretization
transforms of an infinite-dimensional optimal control
problem into a finite-dimensional optimization task,
also called an NLP problem. The latter is solved
usually by some optimization code, e.g. an SQP
solver.

In many physical and engineering systems,
engineers are hindered by strong nonlinearity from
application of linear control theory. In these cases,
the problem of designing optimal controllers reduces

to solving algebraic Riccati equations (ARES), which
solution are usually easy to solve [1]. Moreover, for
nonlinear systems, the optimization problem can be
stated as nonlinear PDEs - Hamilton-Jacobi (HJ) [2],
which are usually hard to solve.

Despite the relative success of these optimal
control strategies for knowledge base processes, these
methods when applied to real control systems have a
weak performance due to model mismatch and
unknown disturbances.

In the past few decades, as the interest in fuzzy
systems (FS) has increased, researchers have
considered the stability analysis of these fuzzy
systems using a variety of modeling and control
frameworks.

The popularity of FS models arises not only from
its simplicity, but essentially from the fact of an
alternative approach to traditional nonlinear
modeling.

Additionally, the fuzzy inference systems emerged
as one of the most useful approaches to collect human
knowledge and expertise on control and to transform
the collected knowledge into a basis for developing
controllers [3].

A fuzzy logic controller is usually a fuzzy
inference system establishing a static mapping from
the state variables input values to the actuators output
values [3].
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Co-state variables play a key role in finding the
optimal control when using Pontryagin’s Minimum
Principle (PMP). However, looking at the problem on
fuzzy logic grounds, the co-state variables appears to
behave like the output of an expert system that knows
which sequence of values will minimize the cost
function.

In this approach, the (adaptive) fuzzy inference
system can be used to generate actuator values, but its
primary function is to generate estimates of the co-
state variables.

A number of stable and optimal fuzzy controllers
were developed for linear systems by using the PMP
with guadratic cost function. Wang [4] developed the
optimal fuzzy controller for linear time-invariant
systems. Based on the conventional linear quadratic
optimal control theory, Wu and Lin [5] presented a
design method of the optimal controllers for
continuous- and discrete-time fuzzy systems. Later,
Wu and Lin [6] developed a design scheme of the
optimal fuzzy controller under finite- or infinite-
horizon by using the calculus-of-variation method. In
these works, a local and global approach for stable
fuzzy controller design methods for both continuous
and discrete-time fuzzy systems under both finite and
infinite horizons using traditional linear optimal
control theory is presented.

In this paper, several computational techniques for
real-time optimal control of non-linear systems are
presented. The control policies make use of the
Pontryagin’s Minimum Principle and the temporal
backpropagation. These techniques are combined to
improved the feedforward supervised Fuzzy System
of the state co-variables of the optimal problem.

This study considers the application of optimal
control strategy to an experimental pilot plant reactor
apparatus. It involves a continuous stirred tank
reactor (CSTR) with a capacity of 80 liters, fitted
with a cooling jacket and a hydraulic stirring system.
This pilot plant has been the subject of several studies
and was used as a benchmark to test control
algorithms and other tools [7].

The purpose of this work is to implement an
optimal control algorithm, using the learning optimal
strategy as described in more detail in [8].

In this article, a Fuzzy Model (FM) is used as the
nonlinear controller of co-state variable of optimal
control problem. The FM is trained to directly
minimize the performance index subjected to plant
outputs, states and inputs. The optimization is carried
out using a gradient scheme that is computed
employing the recently developed concept of
convergence of state and co-state optimal trajectories.

2 The Fuzzy Inference System

A fuzzy controller, as well as a FIS, comprehends the
following three elements: the membership functions,
which fuzzify the physical inputs, the inference
engine, with a rule base decision; and the defuzzifier,
that converts the fuzzy control decisions into physical
control signals.

Various structures and learning algorithms are
capable of implementing fuzzy inference engine and
can be used as co-state variable controller. Without
any loss of generalization, the fuzzy system uses the
singleton fuzzifier, the product inference engine and
the centre-average defuzzifier.

Consider a system y = f (x), where y is the output

variable and x =[x,---,x,]' € R" is the input vector.
Let U =[a,, B |x-x[e,,B,] be the domain of input
vector x. The problem to solve is the following:
consider the input-output data pairs
(xk,yk), k=12--n, where x.eU and
Y, €V =R. Our objective is to design a fuzzy system
g(x) based on these input-output pairs that
approximates the unknown function f (x), based on

collected data points.
The relationships in the FS are based on a
collection of if-then rules of the type:

R, IFxisAand--andx, isA' THENYisC (1)

where Af in U; and C_inV are linguistic terms

characterized, respectively, by fuzzy membership
functions A’(x;) and C_ (), and the index set is
defined by

| ={i1,i2,~--,i li; =12, ,Nj; =1,2,---,n} ()

Fuzzy system g(x) is constructed through the

following steps:
Stepl: Partition of the input space — For each j,

j=1--.n define N; fuzzy sets in [e;, ;| using the

following  triangular ~ membership  functions:
Aj(xj)zy(x.'if‘l X" Y.”l), for r=1---,N;. After

T I I |
completing this task, the domain space is partitioned
by a grid of triangular membership functions. The
antecedent of fuzzy rule Ril,---' is a fuzzy set

Wy

A,..., =X]A €U, with the membership functions

A (X)=A(x)*=A"(x,), where * is the min
or product T-norm operator and i,---,i, €| .

n
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Step 2: Learning of the Rule base — For each
antecedent, with index i,---,i, €, find the subsets

of the training data where the membership function
A (x) is not null. If the number of points found is

not zero, then rule R,

(NREEA N

is added to the rule base,
represented by a table of indexes:
RB={ij, i, e l:A,  (%)>0k=1--n,}.

Step 3: The fuzzy system —The fuzzy system can thus
be represented by:

=IMZlA(X) 6 |M21A(x) (3)

where, 6, is the point in V at which C (y) achieves

its maximum value and | RB is the index of the
rule and M is the total number of fuzzy rules.

3 The Optimal Control Algorithm

Consider the nonlinear discrete dynamic system as:
X1 = 9(%)+h(x)u, 4

where g:R" - R" and h:R" —R™™ are continuous
over R". Assume that is Lipschitz
continuous on a set U e R" containing the origin, and
that system is stabilized in the sense that there exists
a continuous control on U that asymptotically

stabilizes the system. It is desired to find a sequence
of u,, which minimizes the cost function:

ZL XUy ) (5)

g, +hu,

J= d) N, Xy
where  L*(X,, U )= (X, — ()" R (X, =) +U, QU
and ®(N,x,)=(Xy—ry) Ry(xy—ry). r, is the
desired state at k sample, R, and Q, are matrices that

allow to weight attainment of the desired state versus
control effort. The control problem is to find the
control sequence u, that minimizes the above
criterion or cost function J, in the interval [1,N]. This

solution is found by solving simultaneously the
following equations:

oH*
M= = (% Uy) (6)
oH* of 6Lk
7
ﬂ'k an (ax j ﬂ'k+l Xk ( )
_oH* (ot ! AL-
0,, [ J /?'k+1+_ (8)
U, ou, ou,

Limit conditions equations:
0 ot Y T
AL 4] a=0] 2 Jdx,=0  (9)
X \ 9% Xy
where H=L“+A],-f“ is the Hamiltonian

functions and A4, e R" is a vector of Lagrange

multipliers. Accordingly to common usage one will
designate A, as the co-state variables.

Now, (7)-(9) can be rewritten:

A :Akﬂk+l+Rk(xk _rk) (10)
u, = _Ql:lBkj’kﬁ-l' (11)
Ay =Ry (X —1y) (12)

where A =(ﬁf"/§xk)T and B, =(ﬁfk/§uk)T.

Given (9), (12) allows one to write the control
variable at time k as:

U ==Q h(X) A (13)
Now the approach proposed in this paper may be

made explicit. One takes 4, ., as the output of a fuzzy

inference system A that at instant k generates an
estimate of 4_,, having as inputs the observed state

X, and the time to go N-k: 4, , = i;ll =A(X,,N—-K).
From equation (10) and (17) we have
Xea = Ok — Hie Ay (14)

where H, =h(x,)Q,*h" (x,) .

In order to have no violation of the control
variables constrains in k sample, the Q, matrix has

its values strong increased to penalize the violations.

In general, finding solutions is not an easy task
due to the equations interdependence, which implies
the used of forward and backward time sequences.

If, by adaptation or learning through fuzzy
inference system, along successive runs or training
iterations of the system from k =0 to N, the estimates
converge to the optimal ones, then any of the control
laws becomes optimal. This can be done and is the
subject of the next section.

4 The learning algorithm
From (12) it follows that for optimal trajectories one

must necessarily have 4, =R, (xN -, ) .
Theorem: Let E =4, —R,(x, —ry) be the error or

difference between the end value of the state and the
co-state variable trajectories. So, it is a necessary
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condition for the trajectories x"(k) and A"(k) to be
optimal: E=0.

It is also possible to prove that this is a sufficient
condition. If E —0, then x, — x, and 4, — 4, i.e.

the trajectories of the state and co-state variables
converge to the optimal ones. It follows that to attain
optimal state trajectories, it is necessary that the error
E converge to zero. This objective is achieved by
adjusting the final A, co-state variables in order to

minimize:
.
E?=(A Ry (% —1y)) (A —Ry(xy —1y)) (15)
The gradient descent algorithm was employed to
determine the adjustments to the final co-state value:

OE*Y
16
o (16)

where, q=0,1,2,...is the training iteration number
and « is a scalar step-size variable.

2= 28— 20E"

For all g:
oE _1-R, OXy (17)
0y 0y

where | is the identity matrix.
The summands at the right side of (17) can be

solved iteratively as:

X, , OX O,
k+1 _ A( k Hk ﬂ'k 1

04y 04y 02y

Ok _ Oh Ohy

Ohy Ok Oy

(18)

(19)

with ox, /04, =0 and 84, /o4, =1 .

From (10) and (14), the equation (19) can be
rewrite as:

oA, g Oy
2 —(1+RH et
ay (1+RH) AkazN

From the new value of 21" a new backward co-
state trajectory is computed trough equation (10).
With the new value of co-state variable 4™, for

k=1,..,N, a new state trajectory is also computed. As
far as E — Othe trajectories of the state and co-state
variables converge to the optimal ones.

However, looking at the problem on fuzzy logic
grounds, the co-state variables appears to behave like
the output of an expert system that knows which
sequence of values will minimize the cost function.
This can be understood as a control strategy based on
an adaptive fuzzy inference system, which generates
at each time k, in the control time interval, an
estimated value for the co-state variable at time k +1.

(20)

A training iteration can be defined as a sequence
of control actions from k=0 to k=N . Then, along
successive training iterations the fuzzy inference
system rules may be changed in order to generate
estimates converging to the true optimal values of the
co-state variables, tracking the adaptation of co-state
variables (16). This implies the converging of the
state variables values to the optimal.

5 The CSTR

This study considers the application of optimal
control strategy to an experimental pilot plant reactor
apparatus. It involves a continuous stirred tank
reactor (CSTR) with a capacity of 80 liters, fitted
with a cooling jacket and a hydraulic stirring system.
Here an exothermic zero order chemical reaction,
A—B, is experimentally simulated in the vessel [7].

As seen in Fig. 1, the reactor feed consists of two
inlet water streams, with feed rates F, and F, and

temperatures T, and T,, while the outlet stream with
flow rate F, flows by gravity through valve Vc,.

The reactor features a jacket equipped with a
spiral baffle and a hydraulic stirring system. The flow
rate of the cooling fluid, F with inlet temperature

T,, and outlet temperature T,,, is determined by the

aperture of the valve Vc,. An electric resistor is used

to heat supply, controlled by a PWM signal Ur. The
speed of the agitator is controlled by manipulating
valve Vc, .

The total reactor mass balance is given by:
%=%(F1+F2—F3)
where A =zr? [m?] is the reactor area base,
V =V, + Ah[m®] is the reactor liquid volume, with

(21)

V,=42x10°m*, and the reactor radius is
r=0232m. The dynamics of the reactor
temperature can be described by

ar, 1

dT = E(_QR + QG ) + 77UT (22)

with B =pCV +a,, where o, and «; represent the

contribution of the wall and spiral baffle jacket
thermal capacitances, and 77 =0.01. Q; is the rate of
heat removal and Q. is the rate of heat generated by
the reaction, given by

QR :_pCp (Fl(Tl _TR)_ Fz (Tz _Tr ))+UA(|-r _Tj) (23)

Q. = (—AH, )Vk,e &™) (24)
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Here p is the density, C, is the specific heat

capacity of the fluid, U is the overall heat transfer
coefficient and A is the heat transfer area which is
related to the liquid level and reactor radius r as:
A=7zr(r+2h).

The jacket features a spiral baffle made of steel. In
our model, we lump the mass of this metal strip,
which is spirally wound around the vessel wall.
Assuming a uniform temperature, the evolution of the
jacket temperature is represented by
a1, 1

F: 5. (pjcpj Fj (TjO _Tj) +UA(T, _Tj ) (25)
]

where C; is the specific heat capacity of the coolant,

F, is the coolant flow rate and g, = p,C,V;.

A summary of the main process variables and model
parameters is listed in Table 1. With these models the

continuous state variables x(t)=[h(t),T,(t),T,(t)]
are predicted by Taylor ODE solver of 3™ order
%ea =9(%)+9' (V)T +9"(v)T?/2+9"(%)T°/6, where
Yo =(%.u)", u =[F,U;,F] is the actuator

vector and T corresponds to the sampling time. The
resulting discrete model is rewrite in the canonical
form (4).

Table 1: Physical parameters

C,.C, 4184.0 (J/(kg K)) T, 26.0 (°C)
F 0.0 (I/min) U 900.0 (W/(m? K))
F,,F, 4.0 (I/min) v, 0.014 (m®)
(E,/R) 10080 (K) a 7.0x10° (I/K)
K, 6.20x10™ (mol/(m®s)) (-AH,)  33488.0 (J/mol)
T.T, 25.0 (°C) £, P, 1000.0 (kg/m®)
Vead
Stirring system fluid
Ve2
%t FEED 2 I
Vel
é T Va3
# FEED 1

# Cooling fluid

Vs
L .
Fig. 1 — Simplified flowsheet of the pilot plant.
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6 Simulation Results

The optimal co-state trajectories will be computed
and will be used in the adaptation the co-state fuzzy
controller. In the training phase of the fuzzy optimal
controller, quadratic cost weights were
R =diag[1,1,0] ; Q =diag[1,50,0.1]x102;S=4R and
T=10s. A matrix Q, is used to penalize the violation
of input control constrains.

The learning process of section Il was applied to
implement the co-state fuzzy control, through 120
fuzzy rules (which output center parameters of fuzzy
rules are adjusted). A set of simulation tests was
performed by a sequence of steps change in the
reference and the co-state discrete trajectory is
obtained from the learning algorithm. The resulting
trajectory is used to update the fuzzy control weights.
This approach goes on continuously to reduce the
feedforward control function error during the FM
training and generates the optimal control trajectory.

Fig. 2 shown the response of state variables; the
horizontal lines are the reference signals. Three
trajectories are presented, which are result of three
distinct optimization strategies: from the co-state
fuzzy control (“*’); from discrete nonlinear
optimization of co-states variables (‘0”) and from the
numerical optimization of actuations input variables
(“+7). It is possible to observe the similarity of the
responses, with cost function values, respectively,
546.5, 602.5 and 602.5. In Fig. 3 are represented the
co-state trajectory obtained by referred optimization
processes. The actions variables are represented on
Fig. 4. The actuation are limited by: 0<F,<20;

U; >0 and 0<F <5.

7 Conclusion
In this paper the implementation of the non-linear
quadratic optimal strategy to control the liquid level
and temperature in a pilot plant CSTR is presented.
The methodology applied is based on Pontryagin’s
Minimum Principle. A learning algorithm optimally
adjusts interactively the co-state variable values and
the solutions are saved in a fuzzy inference system.
The proposed method allows attaining on-line
close-loop calculation of the optimal control actions.
This feature makes possible to design feedback
strategies more robust than the standard off-line
open-loop optimal ones, subject to model mismatches
and unpredictable disturbances.
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Fig. 2. : Trajectory of state variables, from: optimal Fig. 4. : Actuations computed by: the optimal control
fuzzy control (***); nonlinear optimization of co-state  algorithm (“*”); nonlinear optimization of co-state
variables (“0’) and of control inputs “+”). variables (“0’) and of control inputs “+°).
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