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Abstract: - In this paper, a real-time optimal control technique for control the liquid level and temperature in a 
continuous stirred tank reactor (CSTR) in a pilot plant is proposed. The control system makes use of the 
Pontryagin’s Minimum Principle and from a new back propagation algorithm of the final co-state error, allowing 
the training of an adaptive fuzzy inference system to estimate values for the optimal co-state variables. These 
strategies are employed for designing approximate optimal controllers via a control variable discretization. This 
approach allows the on-line solution of the optimal control problem by training the system, which can be used on 
a close-loop control strategy. The control system design is developed by minimizing a quadratic performance 
index selected for the desired operating conditions. The control simulations results are presented. 
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1   Introduction 
Recent technological innovations have caused a 
considerable interest in the study of dynamical 
processes and its optimization. In industry, the aim of 
control depends on economical reasons. In many 
practical situations, an optimal controller can 
minimize (or maximize) certain desired criterion and 
satisfy some physical constraints at the same time.  
     During last decades, this problem was been widely 
studied in theoretical and numerical perspectives. In 
principle, there are two numerical classes of methods 
to treat problems of optimal control, the first one 
which uses the Pontryagin maximum (or minimum) 
principle to derive the necessary conditions for the 
optimizer. These conditions take the form of a 
multipoint boundary-value problem for the state and 
the additional adjoint equation. The second class 
includes the so-called direct methods. These methods 
have in common in the first step a discretization 
transforms of an infinite-dimensional optimal control 
problem into a finite-dimensional optimization task, 
also called an NLP problem. The latter is solved 
usually by some optimization code, e.g. an SQP 
solver. 
     In many physical and engineering systems, 
engineers are hindered by strong nonlinearity from 
application of linear control theory. In these cases, 
the problem of designing optimal controllers reduces 

to solving algebraic Riccati equations (AREs), which 
solution are usually easy to solve [1]. Moreover, for 
nonlinear systems, the optimization problem can be 
stated as nonlinear PDEs - Hamilton-Jacobi (HJ) [2], 
which are usually hard to solve. 
     Despite the relative success of these optimal 
control strategies for knowledge base processes, these 
methods when applied to real control systems have a 
weak performance due to model mismatch and 
unknown disturbances. 
     In the past few decades, as the interest in fuzzy 
systems (FS) has increased, researchers have 
considered the stability analysis of these fuzzy 
systems using a variety of modeling and control 
frameworks. 
     The popularity of FS models arises not only from 
its simplicity, but essentially from the fact of an 
alternative approach to traditional nonlinear 
modeling.  
     Additionally, the fuzzy inference systems emerged 
as one of the most useful approaches to collect human 
knowledge and expertise on control and to transform 
the collected knowledge into a basis for developing 
controllers [3]. 
     A fuzzy logic controller is usually a fuzzy 
inference system establishing a static mapping from 
the state variables input values to the actuators output 
values [3]. 
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     Co-state variables play a key role in finding the 
optimal control when using Pontryagin’s Minimum 
Principle (PMP). However, looking at the problem on 
fuzzy logic grounds, the co-state variables appears to 
behave like the output of an expert system that knows 
which sequence of values will minimize the cost 
function. 
     In this approach, the (adaptive) fuzzy inference 
system can be used to generate actuator values, but its 
primary function is to generate estimates of the co-
state variables. 
     A number of stable and optimal fuzzy controllers 
were developed for linear systems by using the PMP 
with quadratic cost function. Wang [4] developed the 
optimal fuzzy controller for linear time-invariant 
systems. Based on the conventional linear quadratic 
optimal control theory, Wu and Lin [5] presented a 
design method of the optimal controllers for 
continuous- and discrete-time fuzzy systems. Later, 
Wu and Lin [6] developed a design scheme of the 
optimal fuzzy controller under finite- or infinite-
horizon by using the calculus-of-variation method. In 
these works, a local and global approach for stable 
fuzzy controller design methods for both continuous 
and discrete-time fuzzy systems under both finite and 
infinite horizons using traditional linear optimal 
control theory is presented. 
     In this paper, several computational techniques for 
real-time optimal control of non-linear systems are 
presented. The control policies make use of the 
Pontryagin’s Minimum Principle and the temporal 
backpropagation. These techniques are combined to 
improved the feedforward supervised Fuzzy System 
of the state co-variables of the optimal problem. 
     This study considers the application of optimal 
control strategy to an experimental pilot plant reactor 
apparatus. It involves a continuous stirred tank 
reactor (CSTR) with a capacity of 80 liters, fitted 
with a cooling jacket and a hydraulic stirring system. 
This pilot plant has been the subject of several studies 
and was used as a benchmark to test control 
algorithms and other tools [7]. 
     The purpose of this work is to implement an 
optimal control algorithm, using the learning optimal 
strategy as described in more detail in [8]. 
     In this article, a Fuzzy Model (FM) is used as the 
nonlinear controller of co-state variable of optimal 
control problem. The FM is trained to directly 
minimize the performance index subjected to plant 
outputs, states and inputs. The optimization is carried 
out using a gradient scheme that is computed 
employing the recently developed concept of 
convergence of state and co-state optimal trajectories. 
 
 

2   The  Fuzzy Inference System 
A fuzzy controller, as well as a FIS, comprehends the 
following three elements: the membership functions, 
which fuzzify the physical inputs, the inference 
engine, with a rule base decision; and the defuzzifier, 
that converts the fuzzy control decisions into physical 
control signals. 
     Various structures and learning algorithms are 
capable of implementing fuzzy inference engine and 
can be used as co-state variable controller. Without 
any loss of generalization, the fuzzy system uses the 
singleton fuzzifier, the product inference engine and 
the centre-average defuzzifier. 
     Consider a system ( )y f= x , where y is the output 

variable and [ ]1, , T n
nx x R= ∈"x  is the input vector. 

Let [ ] [ ]1 1, ,n nα β α β= × ×U  be the domain of input 
vector x . The problem to solve is the following: 
consider the input-output data pairs 
( ), ,   1,2, ,k k py k n= "x , where k ∈x U  and 

ky V R∈ = . Our objective is to design a fuzzy system 
( )g x  based on these input-output pairs that 

approximates the unknown function ( )f x , based on 
collected data points. 
     The relationships in the FS are based on a 
collection of if-then rules of the type: 

1 1 , ,1

1
, , 1:IF  is  and and  is  THEN  is 

n n i in

n
i i i n iR x A x A y C

"" "
 
(1) 

where 
j

j
iA in jU  and 

, ,1i in
C

π
in V are linguistic terms 

characterized, respectively, by fuzzy membership 
functions ( )

j

j
i jA x  and ( )

, ,1i in
C y , and the index set is 

defined by 

{ }1 2, , , | 1,2, , ; 1,2, ,n j jI i i i i N j n= = =           (2) 

     Fuzzy system ( )g x  is constructed through the 
following steps: 
Step1: Partition of the input space — For each j, 

1, ,j n=  define Nj fuzzy sets in ,j jα β⎡ ⎤⎣ ⎦  using the 

following triangular membership functions: 
( ) ( )1 1; , ,j r r r

r j j j j jA x x x x xμ − += , for 1, , jr N= . After 

completing this task, the domain space is partitioned 
by a grid of triangular membership functions. The 
antecedent of fuzzy rule 

1 , , ni iR  is a fuzzy set 

1 , , n j

n j
i i j iA A= ∈× U , with the membership functions 

( ) ( ) ( )
1 1

1
, , 1n n

n
i i i i nA A x A x= ∗ ∗x , where * is the min 

or product T-norm operator and 1, , ni i I∈ . 
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Step 2: Learning of the Rule base — For each 
antecedent, with index 1, , ni i I∈ , find the subsets 
of the training data where the membership function 

( )
1 , , ni iA x  is not null. If the number of points found is 

not zero, then rule 
1 , , ni iR  is added to the rule base, 

represented by a table of indexes: 
( ){ }1 21 , , ,, , : 0, 1, ,

nn i i i k pRB i i I A x k n= ∈ > = . 

Step 3: The fuzzy system —The fuzzy system can thus 
be represented by: 

( ) ( ) ( )
1 1

,
M M

l l l
l l

g A A
= =

= ⋅∑ ∑x x xθ θ              (3) 

where, lθ  is the point in V at which ( )
l

C y  achieves 
its maximum value and l RB∈  is the index of the 
rule and M is the total number of fuzzy rules.  
 
 
3   The Optimal Control Algorithm 
Consider the nonlinear discrete dynamic system as: 

( ) ( )1k k k kx g x h x u+ = +               (4) 

where : n ng →\ \  and : n n mh ×→\ \  are continuous 
over n\ . Assume that k k kg h u+  is Lipschitz 
continuous on a set nU ∈\  containing the origin, and 
that system is stabilized in the sense that there exists 
a continuous control on U that asymptotically 
stabilizes the system. It is desired to find a sequence 
of uk, which minimizes the cost function: 

( ) ( )
1

1
, ,

N
k

N k k
k

J N L
−

=

= Φ + ∑x x u
     

(5) 

where ( ), ( ) ( )k T T
k k k k k k k k k kL R u Q u= − − +x u x r x r  

and ( ), ( ) ( )T
N N N N N NN RΦ = − −x x r x r . kr  is the 

desired state at k sample, kR  and kQ are matrices that 
allow to weight attainment of the desired state versus 
control effort. The control problem is to find the 
control sequence *

ku  that minimizes the above 
criterion or cost function J, in the interval [1,N]. This 
solution is found by solving simultaneously the 
following equations: 

( )1
1

,
k

k
k k k

k

Hx f x u
λ+

+

∂
= =

∂
     (6)

1

Tk k k

k k
k k k

H f L
x x x

λ λ +

⎛ ⎞∂ ∂ ∂
= = +⎜ ⎟∂ ∂ ∂⎝ ⎠

     (7) 

10
Tk k k

k
k k k

H f L
u u u

∂ ∂ ∂λ
∂ ∂ ∂+

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠      
(8) 

Limit conditions equations: 
0 0

1 0
0 0

d 0; d 0
TT T

N N
N

L f x x
x x x

∂ ∂ ∂λ λ
∂ ∂ ∂

⎛ ⎞⎛ ⎞ ⎛ ⎞Φ
+ = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

        (9) 

where 1
k k T k

kH L += + ⋅λ f  is the Hamiltonian 
functions and n

k ∈\λ  is a vector of Lagrange 
multipliers. Accordingly to common usage one will 
designate kλ  as the co-state variables.  
     Now, (7)-(9) can be rewritten: 

( )1k k k k k kA R x rλ λ += + −    (10) 

 1
1k k k ku Q B λ−

+= − ,    (11) 

( )N N N NR x rλ = −     (12) 

where ( )Tk
k kA f x∂ ∂= and ( )Tk

k kB f u∂ ∂= . 

     Given (9), (12) allows one to write the control 
variable at time k as: 

1
1( )k k k ku Q h x λ−

+= −     (13) 

     Now the approach proposed in this paper may be 
made explicit. One takes 1kλ +  as the output of a fuzzy 
inference system Λ  that at instant k generates an 
estimate of *

1kλ + , having as inputs the observed state 

kx  and the time to go N-k: *
1 1

ˆ ( , )k k kx N kλ λ+ += = −Λ . 
From equation (10) and (17) we have 

1 1k k k kH+ += −x g λ     (14) 

where 1( ) ( )T
k k k kH h x Q h x−= . 

     In order to have no violation of the control 
variables constrains in k sample, the kQ  matrix has 
its values strong increased to penalize the violations.  
     In general, finding solutions is not an easy task 
due to the equations interdependence, which implies 
the used of forward and backward time sequences. 
     If, by adaptation or learning through fuzzy 
inference system, along successive runs or training 
iterations of the system from 0k =  to N, the estimates 
converge to the optimal ones, then any of the control 
laws becomes optimal. This can be done and is the 
subject of the next section. 
 
 
4   The learning algorithm 
From (12) it follows that for optimal trajectories one 
must necessarily have ( )* *

N N N NR x rλ = − .  

Theorem: Let ( )N N N NE R x rλ= − −  be the error or 
difference between the end value of the state and the 
co-state variable trajectories. So, it is a necessary 
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condition for the trajectories * ( )x k  and * ( )kλ  to be 
optimal: 0E = . 
     It is also possible to prove that this is a sufficient 
condition. If 0E → , then *

k kx x→  and *
k kλ λ→ , i.e. 

the trajectories of the state and co-state variables 
converge to the optimal ones. It follows that to attain 
optimal state trajectories, it is necessary that the error 
E converge to zero. This objective is achieved by 
adjusting the final Nλ  co-state variables in order to 
minimize:

( )( ) ( )( )2 T
N N N N N N N NE R x r R x rλ λ= − − − −     (15) 

The gradient descent algorithm was employed to 
determine the adjustments to the final co-state value:

1 2
q

q q q
N N q

N

EEλ λ α
λ

+ ∂
= −

∂
     (16) 

where, 0,1,2,q = …is the training iteration number 
and α is a scalar step-size variable. 
For all q: 

N
N

N N

xE I R
λ λ

∂∂
= −

∂ ∂      
(17) 

where I is the identity matrix. 
     The summands at the right side of (17) can be 
solved iteratively as: 

1 1k k k
k k

N N N

x xA H λ
λ λ λ

+ +∂ ∂ ∂
= −

∂ ∂ ∂     
(18)

1

1

k k k

N k N

λ λ λ
λ λ λ

+

+

∂ ∂ ∂
=

∂ ∂ ∂      
(19) 

with 0 0Nx λ∂ ∂ =  and N N Iλ λ∂ ∂ = . 

From (10) and (14), the equation (19) can be 
rewrite as: 

( ) 1 1k k
k k k

N N

I R H Aλ λ
λ λ

− +∂ ∂
= +

∂ ∂     
(20) 

     From the new value of 1q
Nλ

+  a new backward co-
state trajectory is computed trough equation (10). 
With the new value of co-state variable 1q

kλ
+ , for 

k=1,..,N, a new state trajectory is also computed. As 
far as 0E → the trajectories of the state and co-state 
variables converge to the optimal ones. 
     However, looking at the problem on fuzzy logic 
grounds, the co-state variables appears to behave like 
the output of an expert system that knows which 
sequence of values will minimize the cost function. 
This can be understood as a control strategy based on 
an adaptive fuzzy inference system, which generates 
at each time k, in the control time interval, an 
estimated value for the co-state variable at time 1k + . 

     A training iteration can be defined as a sequence 
of control actions from 0k =  to k N= . Then, along 
successive training iterations the fuzzy inference 
system rules may be changed in order to generate 
estimates converging to the true optimal values of the 
co-state variables, tracking the adaptation of co-state 
variables (16). This implies the converging of the 
state variables values to the optimal. 
 
  
5   The CSTR 
This study considers the application of optimal 
control strategy to an experimental pilot plant reactor 
apparatus. It involves a continuous stirred tank 
reactor (CSTR) with a capacity of 80 liters, fitted 
with a cooling jacket and a hydraulic stirring system. 
Here an exothermic zero order chemical reaction, 
A→B, is experimentally simulated in the vessel [7].  
As seen in Fig. 1, the reactor feed consists of two 
inlet water streams, with feed rates 1F  and 2F  and 
temperatures 1T  and 2T , while the outlet stream with 
flow rate 3F  flows by gravity through valve 5Vc . 
     The reactor features a jacket equipped with a 
spiral baffle and a hydraulic stirring system. The flow 
rate of the cooling fluid, jF , with inlet temperature 

0jT  and outlet temperature 2jT , is determined by the 
aperture of the valve 3Vc . An electric resistor is used 
to heat supply, controlled by a PWM signal UT. The 
speed of the agitator is controlled by manipulating 
valve 4Vc .  
     The total reactor mass balance is given by: 

( )1 2 3
1

r

dh F F F
dT A

= + −
     

(21) 

where 2
rA rπ=  [m2] is the reactor area base, 

0V V Ah= + [m3] is the reactor liquid volume, with   
3 3

0 4.2 10V m−= × , and the reactor radius is 
0.232 mr = . The dynamics of the reactor 

temperature can be described by 
1 ( )r

R G T
r

dT Q Q U
dT

η
β

= − + +
    

(22) 

with r p rC Vβ ρ α= + , where rα  and jα  represent the 
contribution of the wall and spiral baffle jacket 
thermal capacitances, and 0.01η = . RQ  is the rate of 
heat removal and GQ  is the rate of heat generated by 
the reaction, given by 

( )1 1 2 2( ) ( ) ( )R p R r r jQ C F T T F T T UA T Tρ= − − − − + −    (23) 

/( )
0( ) n rE RT

G rQ H Vk e−= −Δ     (24) 
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Fig. 2. : Trajectory of state variables, from: optimal 

fuzzy control (‘*’); nonlinear optimization of co-state 
variables (‘o’) and of control inputs ‘+’). 

 
Fig. 3. : Trajectory of co-state variables computed by 
the proposed optimal control algorithm (‘*’) and by 
numeric nonlinear optimization (‘o’). 

 
Fig. 4. : Actuations computed by: the optimal control 
algorithm (‘*’); nonlinear optimization of co-state 
variables (‘o’) and of control inputs ‘+’). 
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