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Abstract: - Pseudorandom generators are a basic foundation of many cryptographic services and information 
security protocols. We propose a modification of a previously published matricial pseudorandom generator that 
significantly improves performance and security. The resulting generator is successfully compared to world class 
standards. 
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1   Introduction 
Most cryptographic systems are based on 
unpredictable quantities. The keys, prime numbers or 
challenge values of many cryptosystems need to be 
unpredictable enough so that the probabilities of all 
different values are more or less the same, making 
impossible any search optimization based on the 
reduction of the key space to the most probable 
values. These are obtained from random sequences 
that can be either truly random or pseudorandom, 
meaning that they are generated deterministically but 
appear to be random enough for practical use. 

A truly random generator is based on a natural 
source of randomness. This source is sampled and 
then postprocessed to make it free of biasing and 
skewing.  

A pseudorandom generator is a completely 
deterministic algorithm, in the sense that the 
sequence it generates is a function of its inputs and, 
unlike a truly random generator, its output can be 
reproduced. This means that we only need the seed 
(the input to the pseudorandom generator) in order to 
regenerate the complete output sequence. The output 
sequence is much longer than the seed and it is not 
really random, it is just undistinguishable from a real 
random sequence (see [5, 7, 8]). 

For security applications we need to produce 
sequences with large periods, high linear 
complexities and good statistical properties. Several 
statistical tests are applied; these tests include 
checking the frequency of single bits, pairs of bits 
and of other bit patterns. Also, the autocorrelation 
and the linear complexity of the sequence are used.  

In this paper we propose a modification to a 
previously published pseudorandom generator based 

on block upper triangular matrices that allows 
improving performance and security by using word 
packed matrices, implementing over Z2 and 
introducing new extraction and key scheduling 
mechanisms. 

 
2   Preliminaries  

 
2.1    Original Generator 
The generator is based on the powers of a block 
upper triangular matrix (BUTM) defined over Zp, 
with p prime. As we take the different powers of a 
BUTM, we have as a result a sequence of matrices of 
very long period that has great properties in terms of 
randomness. Each element of the sequence (each 
BUTM) can be processed to obtain a series of values 
that produce an output sequence with great statistical 
values. This scheme is simple enough to be really fast 
but incorporates enough complexity to present great 
cryptographic properties. For more details see [1, 2]. 

 
2.2    Packed Matrices 
The concept of word packed matrices is essential for 
the optimized implementation of the generator over 
Z2. Packed matrices allow adding and multiplying 
binary matrices just by performing binary operations 
between processor registers, which is very efficient. 

We define a matrix, whose elements lie in Z2, as a 
word packed matrix if one of its dimensions (rows or 
columns) is packed as word sized groups of bits. 

Operations involving packed matrices are 
equivalent to those between conventional matrices 
since packed matrices are, essentially, just a way of 
storing the elements of the matrix so that the 
computations required can be efficiently implemented 
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as binary operations between processor registers. 
Nevertheless, they present certain peculiarities of 
their own that must be taken into account. 

The addition of packed matrices must be done 
between matrices of the same type, be them packed 
by rows or by columns. Although they could be 
unpacked and operated normally, the optimal way is 
to perform a XOR operation word by word. 

The product operation between packed matrices is 
a little more complex than the addition. The product 
must be done between matrices of different types and 
with compatible sizes. The multiplicand has to be a 
row packed matrix, while the matrix corresponding to 
the multiplier must be packed by columns. 

 
 

3   Description 
 
3.1   Implementation 
During each iteration, the following operations have 
to be performed: 
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It can be observed that X(h) has to be computed for 
each iteration but, Bh is also required, this forces to 
keep in memory the original matrices, X or B, and 
their power, X(h) or Bh. It is also necessary to employ 
temporary matrices E and F since the same matrix 
cannot be employed as source and destination at the 
same time. 

Considering the peculiarities of the product 
operation between packed matrices we can identify 
the following matrices and types: 

 
− A has to be a row packed matrix,  
− B has to be a row packed matrix,  
− B

h 
has to be a column packed matrix,  

− X has to be a row packed matrix,  
− X

(h) 
has to be a column packed matrix,  

− E and F are temporary column packed 
matrices.  

 
Although the product operation between word 

packed matrices generates sparse bits instead of 
words, these bits can be repacked into the desired 
format (rows or columns) without a significant 
performance hit. 

 
3.1.1    Parameters 
Besides determining the format for each matrix, their 
sizes must also be decided for the correct operation of 
the implementation. 

Several sizes and the number of digits of the 
corresponding period are shown in table 1. The 
option that appears to be more adequate is the r=64, 
s=48 since the word size is 32 bits in this case and 64 
requires exactly 2 words. Moreover, the order 
obtained is excellent, allowing the resulting generator 
to be useful for a wide spectrum of applications. 

 
r s digits 

15 8 06 
31 8 11 
47 8 16 
23 16 11 
31 16 14 
47 16 18 
47 32 23 
63 32 28 
64 48 33 
80 48 38 
95 48 43 
96 53 44 

Table 1. Periods for different sizes on p=2. 
 
3.2    Key scheduling 
In order to augment security, the generator performs a 
key scheduling operation by following these steps: 

 
1. Iterate the generator 64 times. 
2. Collapse all words in X(h) by XORing 

them together. 
3. Elevate A and B to the value contained in 

that word using a fast exponentiation 
algorithm. 

 
A good starting point for the generator is achieved in 
this way (see [4]). This operation has only to be 
performed when the key changes. 
 
3.3    Bit extraction 
We have designed an extraction scheme that takes 
advantage of the word packed structure of the X(h) 
matrix in order to achieve the maximum possible 
efficiency. 

The X(h) matrix contains 2 rows with 48 words of 
32 bits each 
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 Original Optimized BBS AES RC4 Correction 
Frequency 1.7716 0.0450 1.0646 1.0268 1.1035 2.7060 

Serial 3.6994 0.0564 1.5252 1.4981 2.2746 4.6050 
Poker 8 254.03 270.53 249.00 254.91 276.35 284.30 

Poker 16 65377 65858 65607 65650 65681 65999 
Runs 15.6624 14.6603 16.1032 15.9688 15.7268 23.5418 

AutoCorr. 0.7967 0.7895 0.7978 0.7984 0.7972 1.2820 
Lin. Comp. 10000 10001 10000 10000 10000 >=10000 

Time 4.8316 0.0527 21.3425 0.2479 0.0170 - 
Table 2. Results for the optimized generator.  
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The extraction mechanism consists in extracting a 
word per each column of X(h) applying a non linear 
function to certain words of the matrix. 

For this purpose, the following non linear 
functions are defined 
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These functions are applied in the following way 
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obtaining a word of 32 bits, ,iγ  for each column 

which produces a total of 48x32=1536 bits of output 
per iteration. 

Combining boolean operations like OR, AND, 
XOR o NOT with the addition modulo 232 prevents 
attacks that are targeted at deducing a part of the seed 
from a certain amount of output sequence. Moreover, 
1536 output bits are extracted nonlinearly from a total 
of 3072 bits per iteration; making brute force attacks 
especially expensive (see [4]). 

 
4   Results 
The results are shown in table 2. The optimized 
generator with r=64, s=48 is compared with the 
original version, and other reference algorithms like 
Blum Blum Shub [3], AES [8] in output feedback 
mode and RC4 [6] working as pseudorandom 
generators. 

The analysis includes the statistical tests described 
in [5], the linear complexity and the execution time. 
These results are the average values obtained in a 
series of 1000 different sequences of 20000 bits in 
length. 

A test is considered to be successful if the result 
obtained is less than the correction value, except in 
the case of the linear complexity, where the expected 
value is n/2, being n the length of the sequence. 

The tests have been performed using the same 
processor, compiler and optimizing options for all 
implementations, in order to make the comparison as 
fair as possible. The implementations have been done 
using standard C, avoiding assembler or special 
instruction sets. 

 
4.1   Performance 

 
The proposed optimization achieves a significant 
performance improvement of over two orders of 
magnitude compared to the original version. With 
this excellent result, the keystream generator lies 
within the same order of magnitude of the standard 
RC4, and is much faster than the rest of the reference 
algorithms studied. 

We consider that, in order to achieve a significant 
performance increase over this optimized version 
over Z2, the use of extended multimedia and vector 
instructions (MMX, SSE, etc.) would be required 
hampering the portability to other architectures not 
supporting this instruction sets. Nevertheless, the 
recent 64 bits microprocessors would allow a direct 
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performance increase by utilizing the bigger registers. 
This does not occur with algorithms like RC4 [6] 
that, by design, cannot take advantage of more 
powerful architectures directly. 

 
4.2   Randomness 
The implementation over Z2 based on word packed 
matrices does not only provide a very satisfactory 
performance level, it also produces sequence of 
excellent quality in terms of randomness.  

It can be observed that the optimized generator 
maintains the quality of original generator and 
achieves comparable and, sometimes, better results 
than the reference algorithms. 

 
5   Conclusions  
We have proposed a modification to a previously 
published pseudorandom generator that achieves a 
performance improvement of two orders of 
magnitude. 

This optimization is based on an implementation 
over Z2 and the use of packed matrices allows 
performing most calculations with native binary 
operations between processor registers. Moreover, the 
word parking system can take advantage of more 
powerful processors with bigger registers, like the 
new 64 bit CPUs, directly unlike most other 
algorithms. 

The generator produces sequences of great quality 
in terms of randomness, comparable to world class 
standard reference algorithms, allows seeds up to 
3072 bits in size, a long period and the extraction and 
key scheduling mechanisms provide more non 
linearity and security.   
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