
Fast Pseudorandom Generator based on Packed Matrices

JOSE-VICENTE AGUIRRE1, RAFAEL ÁLVAREZ2,
LEANDRO TORTOSA3, ANTONIO ZAMORA4

Dpt. of Computer Science and Artificial Intelligence
University of Alicante

Campus de San Vicente, Ap. Correos 99, 03080 Alicante
SPAIN

This research was partially supported by the Spanish grant GV06/018

Abstract: - Pseudorandom generators are a basic foundation of many cryptographic services and information
security protocols. We propose a modification of a previously published matricial pseudorandom generator that
significantly improves performance and security. The resulting generator is successfully compared to world class
standards.

Key-Words: - Pseudorandom Generator, Stream Ciphers, Binary Matrices, Cryptography, Security.

1 Introduction
Most cryptographic systems are based on
unpredictable quantities. The keys, prime numbers or
challenge values of many cryptosystems need to be
unpredictable enough so that the probabilities of all
different values are more or less the same, making
impossible any search optimization based on the
reduction of the key space to the most probable
values. These are obtained from random sequences
that can be either truly random or pseudorandom,
meaning that they are generated deterministically but
appear to be random enough for practical use.

A truly random generator is based on a natural
source of randomness. This source is sampled and
then postprocessed to make it free of biasing and
skewing.

A pseudorandom generator is a completely
deterministic algorithm, in the sense that the
sequence it generates is a function of its inputs and,
unlike a truly random generator, its output can be
reproduced. This means that we only need the seed
(the input to the pseudorandom generator) in order to
regenerate the complete output sequence. The output
sequence is much longer than the seed and it is not
really random, it is just undistinguishable from a real
random sequence (see [5, 7, 8]).

For security applications we need to produce
sequences with large periods, high linear
complexities and good statistical properties. Several
statistical tests are applied; these tests include
checking the frequency of single bits, pairs of bits
and of other bit patterns. Also, the autocorrelation
and the linear complexity of the sequence are used.

In this paper we propose a modification to a
previously published pseudorandom generator based

on block upper triangular matrices that allows
improving performance and security by using word
packed matrices, implementing over Z2 and
introducing new extraction and key scheduling
mechanisms.

2 Preliminaries

2.1 Original Generator
The generator is based on the powers of a block
upper triangular matrix (BUTM) defined over Zp,
with p prime. As we take the different powers of a
BUTM, we have as a result a sequence of matrices of
very long period that has great properties in terms of
randomness. Each element of the sequence (each
BUTM) can be processed to obtain a series of values
that produce an output sequence with great statistical
values. This scheme is simple enough to be really fast
but incorporates enough complexity to present great
cryptographic properties. For more details see [1, 2].

2.2 Packed Matrices
The concept of word packed matrices is essential for
the optimized implementation of the generator over
Z2. Packed matrices allow adding and multiplying
binary matrices just by performing binary operations
between processor registers, which is very efficient.

We define a matrix, whose elements lie in Z2, as a
word packed matrix if one of its dimensions (rows or
columns) is packed as word sized groups of bits.

Operations involving packed matrices are
equivalent to those between conventional matrices
since packed matrices are, essentially, just a way of
storing the elements of the matrix so that the
computations required can be efficiently implemented

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 98

as binary operations between processor registers.
Nevertheless, they present certain peculiarities of
their own that must be taken into account.

The addition of packed matrices must be done
between matrices of the same type, be them packed
by rows or by columns. Although they could be
unpacked and operated normally, the optimal way is
to perform a XOR operation word by word.

The product operation between packed matrices is
a little more complex than the addition. The product
must be done between matrices of different types and
with compatible sizes. The multiplicand has to be a
row packed matrix, while the matrix corresponding to
the multiplier must be packed by columns.

3 Description

3.1 Implementation
During each iteration, the following operations have
to be performed:

(1) 1

()

1

,
,

,
.

h h

h

h

h

E AX XB
X E

F BB
B F

− −

−

= +

=

=

=

It can be observed that X(h) has to be computed for
each iteration but, Bh is also required, this forces to
keep in memory the original matrices, X or B, and
their power, X(h) or Bh. It is also necessary to employ
temporary matrices E and F since the same matrix
cannot be employed as source and destination at the
same time.

Considering the peculiarities of the product
operation between packed matrices we can identify
the following matrices and types:

− A has to be a row packed matrix,
− B has to be a row packed matrix,
− B

h
has to be a column packed matrix,

− X has to be a row packed matrix,
− X

(h)
has to be a column packed matrix,

− E and F are temporary column packed
matrices.

Although the product operation between word

packed matrices generates sparse bits instead of
words, these bits can be repacked into the desired
format (rows or columns) without a significant
performance hit.

3.1.1 Parameters
Besides determining the format for each matrix, their
sizes must also be decided for the correct operation of
the implementation.

Several sizes and the number of digits of the
corresponding period are shown in table 1. The
option that appears to be more adequate is the r=64,
s=48 since the word size is 32 bits in this case and 64
requires exactly 2 words. Moreover, the order
obtained is excellent, allowing the resulting generator
to be useful for a wide spectrum of applications.

r s digits

15 8 06
31 8 11
47 8 16
23 16 11
31 16 14
47 16 18
47 32 23
63 32 28
64 48 33
80 48 38
95 48 43
96 53 44

Table 1. Periods for different sizes on p=2.

3.2 Key scheduling
In order to augment security, the generator performs a
key scheduling operation by following these steps:

1. Iterate the generator 64 times.
2. Collapse all words in X(h) by XORing

them together.
3. Elevate A and B to the value contained in

that word using a fast exponentiation
algorithm.

A good starting point for the generator is achieved in
this way (see [4]). This operation has only to be
performed when the key changes.

3.3 Bit extraction
We have designed an extraction scheme that takes
advantage of the word packed structure of the X(h)
matrix in order to achieve the maximum possible
efficiency.

The X(h) matrix contains 2 rows with 48 words of
32 bits each

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 99

 Original Optimized BBS AES RC4 Correction
Frequency 1.7716 0.0450 1.0646 1.0268 1.1035 2.7060

Serial 3.6994 0.0564 1.5252 1.4981 2.2746 4.6050
Poker 8 254.03 270.53 249.00 254.91 276.35 284.30

Poker 16 65377 65858 65607 65650 65681 65999
Runs 15.6624 14.6603 16.1032 15.9688 15.7268 23.5418

AutoCorr. 0.7967 0.7895 0.7978 0.7984 0.7972 1.2820
Lin. Comp. 10000 10001 10000 10000 10000 >=10000

Time 4.8316 0.0527 21.3425 0.2479 0.0170 -
Table 2. Results for the optimized generator.

1,1 1,2 1,48()

2,1 2,2 2,48

.hX
ω ω ω
ω ω ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The extraction mechanism consists in extracting a
word per each column of X(h) applying a non linear
function to certain words of the matrix.

For this purpose, the following non linear
functions are defined

1

2

3

(, ,) () (),
(, ,) () (),
(, ,) ().

F x y z x y x z
F x y z x z y z
F x y z y x z

= ∧ ∨ ¬ ∧
= ∧ ∨ ∧¬
= ⊕ ∨¬

These functions are applied in the following way

1, 1 1, 1 2, 1 2,

2 2, 1, 1 2, 1

3 2, 1 2, 1, 1

(, ,)
(, ,)
(, ,)

i
i i i i

i i i

i i i

F
F
F

γ ω ω ω ω

ω ω ω

ω ω ω

+ +

+ +

+ +

= +

+

+

obtaining a word of 32 bits, ,iγ for each column

which produces a total of 48x32=1536 bits of output
per iteration.

Combining boolean operations like OR, AND,
XOR o NOT with the addition modulo 232 prevents
attacks that are targeted at deducing a part of the seed
from a certain amount of output sequence. Moreover,
1536 output bits are extracted nonlinearly from a total
of 3072 bits per iteration; making brute force attacks
especially expensive (see [4]).

4 Results
The results are shown in table 2. The optimized
generator with r=64, s=48 is compared with the
original version, and other reference algorithms like
Blum Blum Shub [3], AES [8] in output feedback
mode and RC4 [6] working as pseudorandom
generators.

The analysis includes the statistical tests described
in [5], the linear complexity and the execution time.
These results are the average values obtained in a
series of 1000 different sequences of 20000 bits in
length.

A test is considered to be successful if the result
obtained is less than the correction value, except in
the case of the linear complexity, where the expected
value is n/2, being n the length of the sequence.

The tests have been performed using the same
processor, compiler and optimizing options for all
implementations, in order to make the comparison as
fair as possible. The implementations have been done
using standard C, avoiding assembler or special
instruction sets.

4.1 Performance

The proposed optimization achieves a significant
performance improvement of over two orders of
magnitude compared to the original version. With
this excellent result, the keystream generator lies
within the same order of magnitude of the standard
RC4, and is much faster than the rest of the reference
algorithms studied.

We consider that, in order to achieve a significant
performance increase over this optimized version
over Z2, the use of extended multimedia and vector
instructions (MMX, SSE, etc.) would be required
hampering the portability to other architectures not
supporting this instruction sets. Nevertheless, the
recent 64 bits microprocessors would allow a direct

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 100

performance increase by utilizing the bigger registers.
This does not occur with algorithms like RC4 [6]
that, by design, cannot take advantage of more
powerful architectures directly.

4.2 Randomness
The implementation over Z2 based on word packed
matrices does not only provide a very satisfactory
performance level, it also produces sequence of
excellent quality in terms of randomness.

It can be observed that the optimized generator
maintains the quality of original generator and
achieves comparable and, sometimes, better results
than the reference algorithms.

5 Conclusions
We have proposed a modification to a previously
published pseudorandom generator that achieves a
performance improvement of two orders of
magnitude.

This optimization is based on an implementation
over Z2 and the use of packed matrices allows
performing most calculations with native binary
operations between processor registers. Moreover, the
word parking system can take advantage of more
powerful processors with bigger registers, like the
new 64 bit CPUs, directly unlike most other
algorithms.

The generator produces sequences of great quality
in terms of randomness, comparable to world class
standard reference algorithms, allows seeds up to
3072 bits in size, a long period and the extraction and
key scheduling mechanisms provide more non
linearity and security.

References:

[1] Álvarez, R., Climent, J.J., Tortosa, L., Zamora,

A. An Efficient Binary Sequence Generator with
Cryptographic Applications. Appl. Mathematics
and Computation 167-1 (2005) 16-27

[2] Álvarez, R., Tortosa, L., Vicent, J. F., Zamora,
A. An Integral Security Kernel. Transactions on
Business and Economics 1-3 (2004) 241-246

[3] Blum, L., Blum, M., Shub, M. A Simple

Unpredictable Pseudorandom Number
Generator. SIAM J. Comput. vol. 15 (1986)
364-383

[4] Kelsey, J., Schneier, B., Wagner, D., Hall, C.

Cryptanalitic Attacks on Pseudorandom Number
Generators. Fast Software Encryption, Fifth
International Workshop. Springer-Verlag,
(1998) 168-188

[5] Menezes, A., van Oorschot, P., Vanstone, S.

Handbook of Applied Cryptography. CRC
Press, Florida (2001)

[6] Rivest, R. The RC4 Encryption Algorithm. RSA

Data Security, Inc. (1992)

[7] Schneier, B. Applied Cryptography Second

Edition: protocols, algorithms and source code
in C. John Wiley and Sons, New York (1996)

[8] Stallings, W. Cryptography and Network

Security: Principles and Practice. Fourth
Edition. Prentice Hall, New Jersey (2006)

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 101

