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Abstract: - Success of the intervertebral disc tissue engineering approach depends on the restoration of its 

mechanical function and proposing a suitable model as an infrastructure for a better understanding of its 

mechanobiological behavior is a major requirement. This paper presents a finite element formulation including 

the chemical behaviour, inertia terms and viscoelasticity which can be used in our predicted tissue engineering 

procedure as a powerful model. After derivation of the governmental equations, implicit time integration 

schemes are applied to solve the nonlinear equations. The formulation accuracy and convergence for 1D case 

are examined with Sun's and Simon's analytical solution and Drost's experimental Data. It is shown that the 

mathematical model is in excellent agreement and can be used for simulation of the IVD response under 

different types of mechanical and electrochemical loading conditions. 
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1   Introduction 
The intervertebral disc can be described as a 

charged, hydrated and permeable material which is 

comprised largely of collagen and elastic fibers 

embedded in a proteoglycan gel to form a solid 

matrix. As an infrastructure for studying the 

biomechanics of the intervertebral disc tissue 

engineering, it is so vital to propose suitable 

mechanobiological models. During the last decade, 

several researches have been proposed the 

multiphasic computational models to study 

mechanics of the soft tissues (such as articular 

cartilage, intervertebral disc, vascular vessel and 

skin). Mow et al. [1] first presented the biphasic 

theory in which the material was modeled as a 

mixture of two distinct phases and later it was 

extended by Spilker et al. [2]. On the basis of the 

Biot theorem, Simon et al. [3, 4] considered the soft 

tissues in the spinal motion segment as poroelastic 

materials which was later extended by Yang et 

al.[5]. Since significant deformations resulting from 

loading and inherent swelling mechanisms in the 

soft tissues have been described, Mow et al. [6] 

developed a triphasic model to consider the effects 

of swelling and transport in descriptions of soft 

tissue mechanics. Then Gu et al. [7] and Sun et al. 

[8] extended triphasic theory to model the mechano-

electrochemical behaviors of charged hydrated soft 

tissues containing electrolytes. Later, Simon et al. [9, 

10] and Laible et al. [11, 12] extended poroelastic 

model to poroelastic transport swelling model which 

includes chemical effects.  
It is so clear that all these models tried to incorporate 
the features of actual biological tissue but there are 
some limitations that should be improved for better 
understanding of the intervertebral disc 
biomechanics. Except for the model of Simon [3, 4] 
and Yang [5], the previous models are quasi static 
which means that the inertia is ignored. Actually, the 
inertia terms can be significant when the external 
forces vary rapidly. Also the construction of 
biological tissue such as collagen fibers and 
proteoglycan gel are highly viscoelastic, but only the 
models of Huang [13], Suh [14], and Yang [5] 
considered this point. Additionally, some limited 
models considered the chemical and electrical 
effects (Sun [8], Simon [9, 10] and Iatridis [12]), 
which is so important for us in our predicted tissue 
engineering procedure. So based on the work of Sun, 
Simon and Yang, this paper presents a novel mixed 
finite element formulation including the chemical 
behaviour, inertia terms and viscoelasticity which 
can simulate intervertebral disc response regarding 
to the different types of mechanical, electrical and 
physicochemical loading conditions. 
 

 

2   Mechanobiological Model 
This mechanobiological model considers a charged 

hydrated tissue engineered intervertebral disc as a 

mixture consisting of: (1) a porous, permeable, 

charged solid phase; (2) an incompressible fluid 

phase; and (3) ion phase with two ion species, i.e., 
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anion and cation. According to the Biot theory, the 

derivation of the governing equation of the fluid was 

based on empirical evidence that the fluid flow in 

porous media obeys Darcy’s law [10]. By the way, 

this model is strictly based on the laws of continuum 

mechanics. 

 

 

2.1 Porous Model 
There are different forces on the solid phase which 

are the frictional force between solid and fluid, body 

force, fluid pressure and the pressure due to the 

chemical potential. So the momentum conservation 

law for the porous solid in the absence of body force 

can be written as Eq.1. 
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As the model satisfies the Darcy equation, the 

momentum conservation laws for the pore fluid in 

the absence of body force can be written as Eq.2 [9, 

10]. 
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The storage due to compressibility of the solid and 

of the fluid should be equal to the dilation of the 

fluid and of the solid (On the basis of the mass 

conservation law). So the fluid pressure can be 

expressed as Eq.3 [3]. 
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Where: Q and α are as Eqs.4 and 5. 
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2.2 Electrochemical Model 
On the basis of Sun's work [8] (in the absence of the 

magnetic and gravitational effects), the 

governmental equations can be derived from the 

momentum equations, continuity equations and 

electrical current condition as Eqs.6 and 7. 
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We can rewrite the Eqs.8 and 9 in Eqs.10 and 11 by 

nominating α
βk  as Eqs.12-15 

−++++++ ∇+∇= µµ ~~
21 ckckJ               (10) 

+−−−−−− ∇+∇= µµ ~~
21 ckckJ                 (11) 

sfsfsfsf

sf

ffffff

ff
k

−−++−+−+

+−−
+

+

++

+
−=

)(
1

ρ
               (12) 

sfsfsfsf ffffff

f
k

−−++−+−+

−+
−

+

++
−=

ρ
2                (13) 

sfsfsfsf

sf

ffffff

ff
k

−−++−+−+

−++
−

−

++

+
−=

)(
1

ρ
              (14) 

sfsfsfsf ffffff

f
k

−−++−+−+

+−
+

−

++
−=

ρ
2               (15) 

 

 

3   FE Formulation of the Model 
Using the standard Galerkin weighted residual 

method the finite element formulation is constructed 

[15]. Applying the divergence and green's theorem, 

the finite element formulation of the porous and 

electrochemical model is derived in matrix form as 

Eqs.16, 17 and 18. 
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Where: the mentioned parameters are defined 

according to the Eqs.19-31. 
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4   Numerical Solution 
The implicit Newmark integration scheme [15, 16] is 

applied to solve Eq.16. In this method assumptions 

are as Eqs.32 and 33. 
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Where α  and δ  are parameters that can be 

determined to obtain integration accuracy and 

stability. A very common technique used is the 

trapezoidal rule, which is Newmark method with 

2

1
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demonstrate the basic additional consideration 

involved in a nonlinear analysis.  

So we can rewrite the Eqs.32 and 33 as Eqs.34 and 
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At time tt ∆+ , we can write Eq.36 for a dynamic 

system. 
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Elimination X&&tt ∆+  and X&tt ∆+  by using Eqs.34 to 36, 

gives Eq.37 
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So the term X&tt ∆+  and X&&tt ∆+ can be updated as 

Eq.38 and 39.  
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It is clear that X&t  and X&&t  are known from the 

previous step of the calculations. So if Xtt ∆+  is 

determined from Eq.37, X&tt ∆+  and X&&tt ∆+ can be 

obtained from equations 38 and 39. So, the main 

point of this problem is to solve Eq.37. The Newton 

method was used for solving Eq.37. 

The implicit backward-Euler method [15, 16] is 

applied to solve Eqs.17 and 18. This method 

approximates the derivative as Eqs.40 
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So Eqs.17 and 18 become as Eqs.41 and 42, 

4fµKµK )()()()()( ~~ tttttttttt ∆+−∆+−∆++∆++∆+ =+       (41) 

5

c

fcc
C )()()( )( ttttt

t

∆+∆+ =−
∆

                                     (42) 

The Newton method was used for solving Eqs.41 

and 42. 

 

 

5   Validation 
To investigate the validation of the porous model, 

Simon's one-dimensional poroelastic problem with 

analytical solution [3, 4] is used. This problem 

represents the motion of a porous elastic material 

along the x-axis. The material properties, initial and 

boundary conditions are referred to Simon's work [3, 

4]. The shape function used in this one-dimensional 

problem is isoparametric linear function (Ten 

elements). Fig.1 shows how the solid and fluid 

displacements vary with time at x=0. 

 

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0 0.02 0.04 0.06 0.08 0.1

Time (s)

D
is

p
la

c
e
m

e
n

t 
(m

)

FEM Results (Fluid Phase) FEM Results (Solid Phase)

Simon's Analytical Results Simon's Analytical Results

Fig. 1: Validation of the model with Simon's work 

 

 To validate the mechano-electrochemical 

phenomena of charged, hydrated intervertebral disc, 
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a transient free swelling problem was studied using 

our finite element formulation in compare with Sun's 

results [8]. The shape functions used in this one-

dimensional problem are isoparametric linear 

functions (five elements). Assuming a frictionless 

lateral boundary, only axial motion is possible and 

the problem is reduced to a 1-D problem. The 

material properties, initial and boundary conditions 

are referred to Sun's work [8]. Fig.2 shows the 

history of the solid displacement at the surface. 
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Fig. 2: Validation of the model with Sun's work  

(Free Swelling Problem) 

 

After validation of the FEM results with analytical 

solutions, our model was used to simulate the load 

displacement response as obtained by Drost et al. 

[17]. That study considered the compression of the 

canine annulus under chemical and mechanical 

loading. Using our FEM model, the mentioned 

experimental test was simulated in following load 

stages: 

(1) Conditioning, c=0.6 M, P= 0.08 MPa 

(2) Swelling, c=0.2 M, P=0.08 MPa 

(3) Consolidation, c=0.2 M, P=0.20 MPa. 

Fig.3 shows how the Displacement of annulus 

fibrosus specimen varies with time and compares 

theoretical results with experimental data (by Drost 

et al. [17]). 
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Fig. 3: Validation of the model with Drost's 

Experimental Data 

However, the formulation accuracy and convergence 

for 1D case are examined and it is shown that the 

FEM results are in excellent agreement. 

 

 

6   Conclusion 
Success of the intervertebral disc tissue engineering 

approach depends on the restoration of its 

mechanical function and proposing a suitable model 

as an infrastructure for a better understanding of its 

mechanobiological behavior is a major requirement. 

Based on the importance of considering the 

viscoelasticity, inertia terms and electro chemical 

behaviour in modeling the biomechanical responses 

of the tissue engineering procedure, we developed 

our mathematical formulation. The standard 

Galerkin weighted residual method was used for 

providing numerical solution to this problem (which 

is intractable to analytic solution) and then implicit 

time integration schemes are applied to solve the 

nonlinear equations. 

Our model was verified by comparison of the 

derived finite element results for one dimensional 

model with analytical solution by Simon et al. [3, 4] 

and Sun et al. [8] and also experimental data by 

Drost et al. [17]. It is shown that our finite element 

formulation is capable of solving the triphasic 

problems of intervertebral disc under different types 

of mechanical, electrical and physicochemical 

loading conditions. Now on the basis of this 

infrastructure model we can devote our future work 

to development of this model in details and studying 

the mechanobiology of the tissue engineered 

intervertebral disc. 

 

 
Nomenclature 

c  Concentration of the ion phase  

E Strain Tensor 

fαβ  Frictional coefficients between components  

in multiphasic model 

J Jacobean Matrix 

J
+ 

/ J
-

  Positive / negative ion flux   

k  Permeability  

Ks / Kf Bulk module for the solid / fluid phases 

K  Stiffness matrix  

n  Porosity  

N
i
  Shape functions  

P  Fluid pressure  

p
c
  Pressure due to the chemical potential  

T  Stress Tensor 

t
i 
 Pressure at the boundary  

u  Displacement of solid  

v
α
  Velocity of α component  
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w  Relative displacement of fluid  

µ
+
/ µ

−
  Electrochemical potentials for Cation / 

Anion  

µ0  Initial chemical potential  

ρα  Mass density of α component  

 

 

References: 

[1] V.C. Mow, S.C. Kuei, W.M. Lai, C.G. 

Armstrong, Biphasic creep and stress relaxation of 

articular cartilage: Theory and experiments, Journal 

of Biomechanical Engineering, Vol.102, 1980, pp. 

73-84.  

[2] R.L. Spilker and J.K. Suh, Formulation and 

evaluation of a finite element model for the biphasic 

model of hydrated soft tissue, Computers & 

Structures, Vol.35, No. 4, 1990, pp. 425-439. 

[3] B.R. Simon, J.S.S. Wu, M.W. Carlton, J.H. 

Evans, L.E. Kazarian, Structural models for human 

spinal motion segments based on a poroelastic view 

of the intervertebral disc, Journal of Biomechanical 

Engineering, Vol.107,1985, pp. 327-335.  

[4] B.R. Simon, J.S.S. Wu, M.W. Carlton, 

Poroelastic dynamic structural models of Rhesus 

spinal motion segments, Spine, Vol.10, 1985, pp. 

494-507.  

[5] Z. Yang, , P. Smolinsky, Dynamic finite element 

modeling of poroviscoelastic soft tissue, Computer 

Methods in Biomechanics and Biomedical 

Engineering, Vol.9, 2006, pp. 7-16. 

[6] W.M. Lai, J.S. Hou and V.C. Mow, A triphasic 

theory for the swelling and deformation behavior of 

articular cartilage, Journal of Biomechanical 

Engineering, Vol. 113, 1991, pp. 245-258.  

[7] W.Y. Gu, W.M. Lai and V.C. Mow, A mixture 

theory for charged-hydrated soft tissues containing 

multi-electrolytes: passive transport and swelling 

behaviors, Journal of Biomechanical Engineering, 

Vol. 120, 1998, pp. 169-180. 

[8] D.N. Sun, W.Y. Gu, X.E. Guo, W.M. Lai, and 

V.C. Mow, A mixed finite element formulation of 

Triphasic mechano-electrochemical theory for 

charged, hydrated biological soft tissues, 

International Journal of Numerical Methods in 

Engineering, Vol. 45, 1999, pp. 1375-1402.  

[9] B.R. Simon, Multiphase poroelastic finite 

element models for soft tissue structures, Applied 

Mechanics Reviews, Vol. 45, 1992, pp.191-218. 

[10] B.R. Simon, , J.P. Liable, Y. Yuan, M.H. Krag, 

A poroelastic finite element formulation including 

transport and swelling in soft tissue structures, 

Journal of Biomechanical Engineering, Vol.118, 

1996, pp. 1-9. 

[11] J.P. Laible, D.S. Pflaster, M.H. Krag,, A 

poroelastic-swelling finite element model with 

application to the intervertebral disc, Spine, Vol.18, 

1993, pp. 659-670. 

[12] J.C. Iatridis, J.P. Laible, M.H. Krag, Influence 

of fixed charge density magnitude and distribution 

on the intervertebral disc: applications of a 

poroelastic and chemical electric (PEACE) model, 

Journal of Biomechanical Engineering, Vol.125, 

2003, pp. 12-24. 

[13] C.Y. Huang, V.C. Mow, G.A. Ateshian, The 

role of flow-independent viscoelasticity in the 

biphasic tensile and compressive response of 

articular cartilage, Journal of Biomechanical 

Engineering, Vol.123, 2001, pp. 410-417.  

[14] J.K. Suh and S. Bai, Finite element formulation 

of biphasic poroviscoelastic model for articular 

cartilage, Journal of Biomechanical Engineering, 

Vol.120, 1998, pp.195-201.  

[15] K.J. Bathe, Finite Element Procedure, Prentice 

Hall, 1995. 

[16] D.G. Duffy, Advanced Engineering 

Mathematics with MATLAB, Chapman and 

Hall/CRC, 2003.  

[17] M.R. Drost, P. Willems, H. Snijders, J.M. 

Huyghe, J.D. Janssen and A. Huson, Confined 

Compression of Canine Annulus Fibrosus Under 

Chemical and Mechanical Loads, Journal of 

Biomechanical Engineering, Vol.117, 1995, pp. 

390– 396. 

 

3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 2007           201


