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Abstract: In the present contribution, we present a constitutive model to describe the mechanical preconditioning

characteristics of soft biological tissues. The model is based on a generalized polyconvex anisotropic strain energy

function represented by a series. The preconditioning is considered as an inelastic dissipative process and is taken

into account by an evolution of material parameters treated as internal variables. Accordingly, evolution equations

are formulated and onset conditions for the softening are defined. A numerical example illustrates the model in

application to preconditioning with increasing upper load levels.
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1 Introduction

When biological tissues are subjected to consecutive

loading and unloading, their mechanical response dur-

ing the first cycles is usually characterized by remark-

able softening, decreasing hysteresis and the tendency

to approach a steady state, in which the material re-

sponse becomes repeatable. This behavior is well-

known as preconditioning. The properties in the pre-

conditioned state depend decisively on the deforma-

tion history [1], i.e. on the test protocol. In particular,

the upper and lower load limits applied have a sig-

nificant influence [2]. Recently, preconditioning has

been modeled in the framework of quasi-linear vis-

coelasticity theory [1, 3] (QLV) or by combination

of QLV with strain softening approaches originating

from elastomer modeling [4]. On the other hand, con-

tinuum damage mechanics (CDM) [5, 6] has been uti-

lized, in particular to model anisotropic damage in ar-

terial walls [7, 8].

In the present work we propose a CDM based

constitutive model to describe the preconditioning be-

havior of soft tissues including the progressive soft-

ening and the dependence on the load limits. This

model is anisotropic, three-dimensional and thermo-

dynamically consistent. First, we briefly resume an

anisotropic hyperelastic model [9] able to describe the

nonlinear elastic behavior of soft tissues. The strain

energy function of the model is polyconvex and co-

ercive [10] so that the material stability and the exis-

tence of a global minimizer of the total elastic energy

are guaranteed in the elastic domain. In the next step,

the anisotropic softening is taken into account by an

evolution of material parameters associated with the

stiffness of the material. These parameters are con-

sidered as internal variables. Accordingly, evolution

equations and onset conditions for the softening are

proposed. Finally, the performance of the precondi-

tioning model is illustrated by a numerical example.

2 Polyconvex hyperelastic model

Soft tissues may be considered as fiber-reinforced ma-

terials consisting of an isotropic matrix and a number

of reinforcing (collagen) fiber families [11], the ori-

entation of which is given by unit vectors m i, i =
1, 2, ..., n. We define n+ 1 structural tensors

Li = m i ⊗m i, i = 1, 2, ..., n, L0 =
1

3
I, (1)

where I denotes the second-order identity tensor and

L0 is assumed to be associated with the isotropic ma-

trix. Forming linear combinations with the aid of non-

negative weight factors v
(r)
i , i = 0, 1, ..., n, one ob-

tains the so-called generalized structural tensors

L̃r =

n
∑

i=0

v
(r)
i Li, r = 1, 2, ...,

n
∑

i=0

v
(r)
i = 1, (2)

characterized by the property trL̃r = 1. Further, the

generalized invariants

Ĩr = tr
[

CL̃r

]

, J̃r = tr
[

(cofC)L̃r

]

, (3)
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r = 1, 2, ..., s, are introduced where C denotes the

right Cauchy-Green tensor and cofC = C
−TdetC

is its cofactor. On the basis of these generalized in-

variants and IIIC = detC, a class of polyconvex

strain energy functions for fiber-reinforced materials

is given by the series representation [9] with an arbi-

trary number of terms s:

W =
1

4

s
∑

r=1

µr

[

fr(Ĩr) + gr(J̃) + hr(III
1/2
C

)
]

, (4)

where fr(Ĩr) and gr(J̃r) are convex and monotone in-

creasing and hr(III
1/2
C

) are convex functions [9, 12].

The condition of the energy and stress free reference

configuration is thus easily satisfied [9]. Taking the

constraint IIIC = 1 into account, the strain energy

(4) can be specified for incompressible materials by

setting

W =
1

4

s
∑

r=1

µr

[

fr(Ĩr) + gr(K̃r)
]

, K̃r = tr(C−1
L̃r).

(5)

The above model shows good agreement with experi-

mental data on various soft tissues [9, 12].

3 Dissipative model

3.1 Evolution of material parameters

Softening is taken into account by evolution of the

material parameters µr, r = 1, 2, ..., s, appearing as

linear factors in the strain energy function (4). These

parameters are considered as internal variables. Ac-

cordingly, the elastic potential (4) is extended to the

free energy

Ψ = Ψ̃(Ĩr, J̃r, IIIC, µr), r = 1, 2, ..., s. (6)

Exploiting the second law of thermodynamics under

isothermal conditions one can write the second Piola-

Kirchhoff stress tensor S and the internal dissipation

D as

S = 2
∂Ψ

∂C
, (7)

D = −

s
∑

r=1

∂Ψ

∂µr
µ̇r = −

s
∑

r=1

ψrµ̇r ≥ 0, (8)

where the thermodynamic variables ψr ≥ 0 conjugate

to µr have been introduced. Similarly to classical con-

tinuum damage mechanics, we define yield surfaces in

strain space by

ϕr(C, κr) = ψr(C)− κr = 0, r = 1, 2, ..., s, (9)

on which the criterion for the evolution is satisfied.

The parameters κr define the onset of the softening

described by µr. The normals to the surfaces Nr =
∂ϕr/∂C allow to distinguish between unloading ψ̇ <

0, neutral loading ψ̇ = 0 and loading ψ̇ > 0, where

ψ̇r = Nr : Ċ results from the chain rule. Finally, the

evolution equations for µr are written by

µ̇r =

{

dr(ψr, µr)ψ̇r if ψ̇r > 0 and ϕr = 0

0 else,
(10)

where r = 1, 2, ..., s and dr(ψr, µr) ≤ 0 are scalar

functions. Accordingly, µ̇r ≤ 0, r = 1, 2, ..., s, so

that softening is associated with a decrease of the pa-

rameters µr. Note that the dissipation inequality (7)2
is thus satisfied.

3.2 Preconditioning

Softening associated with preconditioning is assumed

to be a progressive process taking place during load-

ing until a stable state is reached. Thus, we set in (9)

κr = ψr, r = 1, 2, ..., s (11)

and consider softening functions of the particular form

dr(µr) = −kr(µr − µ̄r), r = 1, 2, ..., s (12)

with dimensionless scalar factors kr > 0 and param-

eters µ̄r representing the value of µr in the entirely

preconditioned state.

3.3 Preconditioning with different load levels

If the upper and lower amplitudes of the cyclic loading

are changed after the tissue response has stabilized,

the tissue has to be preconditioned anew [2]. This sug-

gests that the attainable degree of softening depends

on the loading history and in particular on the maxi-

mum load experienced in the past. In the model, this

can be regarded by a dependence of the value µ̄r on

the maximum of the associated thermodynamic vari-

able ψr, say ψ̄r. Thus, we have

dr(ψ̄r, µr) = −kr(µr − ˆ̄µr(ψ̄r)), (13)

where

ψ̄r = max
τ∈(−∞,t]

[ψr(C(τ))] , r = 1, 2, ..., s. (14)

We illustrate the model by simulating an experiment

in which a biological tissue is subject to uniaxial

cyclic loading with increasing stress levels as depicted

in Figure 1. The tissue is modeled as an incompress-

ible, fiber-reinforced material with two mechanically
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equivalent fiber families. The functions fr and gr are

given by an exponential representation [12]. Further-

more, we restrict the number of terms in the strain en-

ergy to a single term (s = 1), and omit the index for

demonstration purposes. In view of (5) and (6), the

free energy thus takes the form

Ψ = Ψ̃(Ĩ , K̃, µ)

=
1

4
µ

[

1

α

(

eα(Ĩ−1)
− 1

)

+
1

β

(

eβ(K̃−1)
− 1

)

]

.

(15)

Generally, the functional dependence of ˆ̄µr on the

maximum ψ̄r may be studied experimentally. Here,

we suppose the following form

ˆ̄µ(ψ̄) = µini exp

[

−

(

ψ̄

a

)b
]

, (16)

where a > 0 and b ≥ 1 are scalar constants. The

nominal stress in the loading direction simulated on

the basis of (15) is plotted vs. stretch in Figure 1.
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Figure 1: Simulation of the preconditioning of a tissue

sample with increasing upper limits.

4 Conclusions

We proposed a dissipative model for the precondition-

ing behavior of soft tissues based. The model de-

scribes anisotropic elastic behavior even if only one

term is considered. Already a second term renders the

model fully anisotropic both with respect to elastic

and inelastic properties. Polyconvexity and coerciv-

ity of the underlying strain energy function guarantee

material stability and the existence of the solution of

a boundary value problem in the elastic domain. The

general preconditioning characteristics of soft tissues

are well described by the model. Further evaluation in

comparison with experimental data on the softening

behavior will be necessary.
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