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Abstract: In this article we construct a concatenation of globally invertible convolutional codes based symmetric
cryptosystem. At each step in the concatenation we propose two different systems choosing among them depend-
ing on the previous input weight. We describe the encryption and decryption processes and analyze the security
of the proposed cryptosystem.

Key-words: Symmetric cryptosystem, convolutional code, state-space representation, concatenation.

1 Introduction
Symmetric cryptosystems [7, 10] are used to solve

communication problems over insecure channels. A
lot of encryption standards have being designed us-
ing this scheme (DES, AES, etc.) but sometimes they
are not very practical. In addition, security of most of
them has being questioned because of the new tech-
nologies improvements and the research of new cryp-
tographic protocols. For this reason, it is a growing
need of constructing new efficient symmetric cryp-
tosystems.

Though coding theory and cryptography may have
different purposes, it is posible to join them to develop
cryptosystems, such as the block code based public
key cryptosystem developed by McEliece [5].

In this article we propose a new private key cryp-
tosystem based on convolutional codes and their con-
catenation.

Convolutional codes [1, 3, 6] are an specific class
of error correcting codes that generalize block codes
in a natural way. These codes can be represented
as time-invariant discrete linear systems over a finite
field [8].

For this work we have chosen the class of globally
invertible codes [2, 4], since they allow us to uniquely
decrypt the received sequences. In addition, we in-
troduce some changes in the states of the systems in
order to avoid time invariance and get a more dynam-
ical model. About this new scheme it is possible to
emphasize its simply and fast encryption and decryp-
tion processes.

The article is organized as follows. In section 2
we introduce some basic concepts about convolutional
codes and the notation we will use. In section 3 we
describe the presented cryptosystem emphasizing the
steps to encrypt and decrypt a sequence. In section
4 we present a possible exhaustive key research and
a known-plaintext attack. Finally, we provide some
conclusions in Section 5.

2 Preliminaries
In this section we denote by F a finite field. A

convolutional code C with rate k/n is a submodule of
Fn[z] (see [9, 11]) that can be described as

C =
{
v(z) ∈ Fn[z] :

v(z) = G(z)u(z) with u(z) ∈ Fk[z]
}

where u(z) is the information vector or information
word, v(z) is the code vector or code word and G(z)
is an n× k polynomial matrix with rank k called gen-
erator or encoding matrix of C.

We call complexity of C the integer

δ =
k∑

i=1

νi

with νi being the maximum degree of the i-th column
of G(z).

McElice [6] describe a rate k/n convolutional
code C of complexity δ by means of the system

xt+1 = Axt + But

vt = Cxt + Dut

}
t = 0, 1, 2, . . . , γ (1)
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x0 = 0, xγ+1 = 0

where A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ Fk×δ and
D ∈ Fk×k with

u(z) = u0 + u1z + u2z
2 + · · ·+ uγzγ

v(z) = v0 + v1z + v2z
2 + · · ·+ vγzγ

and
G(z) = C(zI −A)−1B + D.

We say then that the four matrices (A,B, C, D)
are the state-space representation of the code C. When
the matrix D is invertible we say that the code C is
globally invertible.

Let us notice that the system (1) drives us to write
the sequence {vt}γ

t=0 as
v0

v1
...

vγ−1

vγ

 =


D

CB D
CAB CB D

...
...

...
. . .

CAγ−1B CAγ−2B . . . . . . D




u0

u1
...

uγ

 . (2)

3 Description of the cryptosystem
From now on we consider F = Z2. Let us suppose

that we have q + 1 pairs convolutional codes of ratio
k/k

(Aj(b), Bj(b), Cj(b), Dj(b)),

not necesarely with the same complexity, such that
Dj(b) is invertible for j = 0, 1, . . . , q and b ∈ {0, 1}.
In order to encrypt a sequence

u = (u0,u1,u2, . . . ,up)

where each block ui for i = 0, 1, . . . , p has length k,
we follow the steps presented below.

Let j = 0, 1, 2 . . . , q and consider

uj =
(
uj

0,u
j
1,u

j
2, . . . ,u

j
p

)
with u0 = u, i.e., the initial information sequence,
and uj = vj−1, i.e., the output of the previous en-
coder. Let us suppose that

bj
i = w(uj

i ), for i = 0, 1, 2, . . . , p− 1 (3)

where w(·) denotes the Hamming weight modulo 2 of
a sequence.

Step 0.
We calculate the word

vj
0(0) = Dj(0)uj

0

and the states

xj
1(0) = Bj(0)uj

0, xj
1(1) = Bj(1)uj

0.

Step i, for i = 1, 2, . . . , p.
Since w(uj

i−1) = bj
i−1, we calculate the word

vj
i (b

j
i−1) = Cj(b

j
i−1)x

j
i (b

j
i−1) + Dj(b

j
i−1)u

j
i

and the states

xj
i+1(0) = Aj(0)xj

i (0) + Bj(0)uj
i ,

xj
i+1(1) = Aj(1)xj

i (1) + Bj(1)uj
i .

In the last step, i.e., for i = p, it is not necessary
to calculate the states, due to the fact that we are not
going to need them.

Thus, we obtain the sequence

vj =
(
vj

0(b
j
0),v

j
1(b

j
1),v

j
2(b

j
2), . . . ,v

j
p(b

j
p)

)
=

(
vj

0,v
j
1,v

j
2, . . . ,v

j
p

)
.

The encrypted sequence is, therefore, v = vq, i.e.,
we receive the sequence

v = (v0,v1,v2, . . . ,vp) .

Now, with the encrypted sequence, the systems and
the criteria to decide which systems do we use to en-
crypt, we should be able to recover the initial sequence

u = (u0,u1,u2, . . . ,up) .

Let us see each decryption step. We study sepa-
rately how to obtain the first block u0, and then the
rest of blocks ui for i = 1, 2, . . . , p.

Obtaining of the block u0 from the block v0.

Step 0.
Considering the way in which we have obtained

the sequence v, we know that v0 = vq
0 = vq

0(0).
Now, since

vq
0(0) = Dq(0)uq

0

and Dq(0) is invertible, we are able to calculate uq
0,

which in turn allows us to calculate

xq
1(0) = Bq(0)uq

0, xq
1(1) = Bq(1)uq

0.
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Furthermore, known uq
0, we know that w(uq

0) =
bq
0, hence, in order to calculate vq

1 the system
(Aq(b

q
0), Bq(b

q
0), Cq(b

q
0), Dq(b

q
0)) was chosen, i.e.,

vq
1 = vq

1(b
q
0).

Step j, for j = 1, 2, . . . , q.
We know that uq−j+1

0 = vq−j
0 = vq−j

0 (0). Now,
since

vq−j
0 (0) = Dq−j(0)uq−j

0

and Dq−j+1(0) is invertible, we are able to calculate
uq−j

0 , which in turn allows us to calculate

xq−j
1 (0) = Bq−j(0)uq−j

0 , xq−j
1 (1) = Bq−j(1)uq−j

0 .

In addition, known uq−j
0 , we know that

w(uq−j
0 ) = bq−j

0 , consequently, in order to calculate
vq−j

1 the system

(Aq−j(b
q−j
0 ), Bq−j(b

q−j
0 ), Cq−j(b

q−j
0 ), Dq−j(b

q−j
0 )),

was chosen, i.e., vq−j
1 = vq−j

1 (bq−j
0 ).

Let us notice that, considering the way in which
we have defined the cryptosystem, u0

0 = u0, i.e., we
have obtained the block u0.

Obtaining of the block ui from the block vi, for
i = 1, 2, . . . , p.

Step 0.
Considering the way in which we have con-

structed the sequence v and the step 0 of the previous
block, we know vi = vq

i = vq
i (b

q
i−1). Now, since

vq
i (b

q
i−1) = Cq(b

q
i−1)x

q
i (b

q
i−1) + Dq(b

q
i−1)u

q
i

and Dq(b
q
i−1) is invertible, we are able to calculate uq

i ,
which in turn allows us to calculate

xq
i+1(0) = Aq(0)xq

i (0) + Bq(0)uq
i ,

xq
i+1(1) = Aq(1)xq

i (1) + Bq(1)uq
i .

Furthermore, known uq
i , we know that w(uq

i ) =
bq
i , therefore, in order to calculate vq

i+1 the system
(Aq(b

q
i ), Bq(b

q
i ), Cq(b

q
i ), Dq(b

q
i )) was chosen, i.e.,

vq
i+1 = vq

i+1(b
q
i ).

Step j, for j = 1, 2, . . . , q.
Considering the way in which the intermediate se-

quences are obtained and the step j of the previous
block, we know that uq−j+1

i = vq−j
i = vq−j

i (bq−j
i−1 ).

Now, since

vq−j
i (bq

i−1)

= Cq−j(b
q−j
i−1 )xq−j

i (bq−j
i−1 ) + Dq−j(b

q−j
i−1 )uq−j

i

and Dq−j(b
q−j
i−1 ) is invertible, we are able to calculate

uq−j
i , which in turn allows us to calculate

xq−j+1
i+1 (0)

= Aq−j+1(0)xq−j+1
i (0) + Bq−j+1(0)uq−j+1

i ,

xq−j+1
i+1 (1)

= Aq−j+1(1)xq−j+1
i (1) + Bq−j+1(1)uq−j+1

i .

In addition, known uq−j
i , we know that

w(uq−j
i ) = bq−j

i , hence, in order to calculate vq−j
i+1

the system

(Aq−j(b
q−j
i ), Bq−j(b

q−j
i ), Cq−j(b

q−j
i ), Dq−j(b

q−j
i )),

was chosen, i.e., vq−j
i+1 = vq−j

i+1 (bq−j
i ).

Let us notice that, considering the way in which
we have defined the cryptosystem, u0

i = ui, i.e., we
have obtained the block ui.

Thus, following this process we recover the initial
sequence

u = (u0,u1,u2, . . . ,up) .

4 Security of the cryptosystem
Let us assume that the cryptanalyst knows the en-

crypted sequence v. Since he knows the technique
used to encrypt, but he does not know neither the num-
ber of systems, nor the matrices, nor the size of the
matrices, the only thing he knows is that the sequence
x, corresponding to the plaintext, satisfies an equation
with the form

v = Mx

where M is, in this case, an invertible matrix. Here,
the cryptanalyst does not know neither x nor M .
Though he knows that M is, as said in equation (2),
lower block triangular, he does not know how many
blocks it has, neither the size of them. Consequently,
an exhaustive key search seems to be unfeasible as
long as the size of the cryptosystem involved matrices
is considerable.

Let us suppose that the cryptanalyst knows some
pairs

(xl,vl), for l = 1, 2, . . . , r

where vl is the encrypted sequence corresponding to
the plaintext xl.
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Let us notice, first of all, that the matrix M is not
the same for every sequence. As we choose the in-
termediate systems depending on the sequence we are
encrypting at each time, we will have as many matri-
ces as plaintext sequences.

Therefore, the cryptanalyst knows

vl = Mlxl, for l = 1, 2, . . . , r,

with Ml an invertible lower block triangular matrix.
As in the previous case, the cryptanalyst does not
know neither the size of the blocks nor the number of
blocks, hence, the attack also seems to be nonviable.

5 Conclusions
In this article we have presented a concatenation

of convolutinal codes based symmetric cryptosystem.
We have described the encryption and decryption pro-
cesses and have analyzed its security concluding that
an exhaustive key search and a known-plaintext attack
are not feasible for high values of the parameters.
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