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Abstract: - The paper aims at proving the stability of a gyroscopic device subjected to different types of 
impulse and step by step perturbations, by using a MathCAD program. The motion equations solutions are 
graphically represented in a stationary situation and also after simulating various perturbations, simulating 
them by help of some mathematical functions. 
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1   Introduction 
The main part of a gyroscopic device is represented 
by the gyroscope itself. The gyroscope is a rigid 
body, having a revolution symmetry and performing 
a fixed point motion. 
The reason of using gyroscope in all kinds of 
navigation devices for aircrafts, ships or sofisticated 
landvehicles is the property of rotation axis stability. 
Stability in motion means maintaining a certain 
trajectory, even if subjected to perturbing factors, in 
the vicinity of the non-perturbed motion trejectory. 
If the stability condition is not achieved, the 
indications of the gyroscopic device may be affected 
and also the safety of the vehicle and persons using 
it. This is why the indications stability should be 
beyond doubt. 
It is obvious that during their travel, aircrafts, ships 
or landvehicles will be inevitably subjected to 
various types of perturbations due to bad weather 
(wind blows, rain, turbulence, tide, waves) or 
external factors (shocks, vibrations) according to the 
path they are moving onto. 
The present paper proposes a possibility of 
simulating the actions of these perturbations upon a 
dynamically tuned gyroscope and analyze by 
graphical representations of motions equations 
solutions, their effect upon syability. 
The dynamically tuned gyroscope consists of a 
symmetrical or non symmetrical rotor which rotates 
at a high angular velocity and has such an elastic 
connection to the its frame, that a gyroscopic torque 
occurs as a result of its transport motion. 
 
 
 

2   Problem Formulation 
The matrix form of the generalized motion equations 
of a dynamically tuned gyroscope is: 
[ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]Ψ+Ψ=Φ+Φ+Φ ΨΨΦΦΦ

&&&&&& cJkcJ   (1) 
where [JΦ] and [JΨ] represent the skew matrix of the 
moments of inertia for the rotors and frame, [cΦ] and 
[cΨ] the matrix of damping coefficients, [kΦ] the 
matrix of elastic coefficients, [Φ ] the vector of the 
rotor angular displacements about the shaft and [Ψ] 
the angular displacements vector of the gyroscope 
frame.  
As we are dealing with a system of non 
homogeneous differential equations, we will start by 
determining the eigenvalues of the characteristic 
equations. 





















λλ

λλ=

λλ

λλ

λλ

λλ

t
11

t
10

tt

t
1

t
0

tt

1110

1110

10

10

ee00
ee00

00ee
00ee

)t(Z
  (2) 

where λ0, λ1, λ10, λ11 represent the solutions of the 
characteristic equations. 
The solutions of the homogeneous equations 
become 

C)t(Z)t(xo ⋅=      (3) 
where C is obviously a constant matrix, obtained 
according to the initial conditions. 
These are the solutions of the motion equations if 
there is no perturbations to affect the gyroscope 
operation. 
If a perturbation occurs, we need to give it a 
mathematical form and use it in order to obtain the 
general solution. Thus, we are going to add a 
particular solution to the homogeneous one. The 
particular solution will be the result of the 
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mathematical model of the considered type of 
perturbation.  
 
 
3   Problem Solution 
 If we consider for example f(t) the mathematical 
representation of the external perturbation, the 
general solution will be: 

( ) ( ) ( )∫ ττ−⋅τ−φ+=
t

0
jj dtf1,t)t(xoj,txg   (4) 

where ( ) [ ] ><−⋅=φ
j1)0(Z)t(Zj,t . 

In order to express the action of shocks, small 
impacts or even unbalanced rotors we considered 
some impulse type of functions with variable 
parameters, whose actions at different moments are 
represented in Fig.1 and Fig.2. 
Thus, for )t4exp(tk)t,k(1f −= , we get 
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while for a variation given by 
)tkexp(t4)t,k(2f −= , we get the following 

representation: 
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In the following figures (fig.3 and fig.4) we 
represented by comparison the homogeneous 
solution (with no perturbation) with a solid line and 
the various representations for perturbed solutions. 
In fig.3 the perturbation was modelled using the 
function f1, with the changing parameter k, while in 
fig.4 we represented the perturbation according to 
function f2, again with a variable parameter k, as 
shown above. The general solutions, affected by 
perturbations were represented with dotted lines, one 
for each value of the parameter k. 

Fig.3 

Fig.4 
It is obvious from the figures above that the non-
homogeneous solution (obtained by introducing the 
impulse perturbation) tends to remain in the vicinity 
of the initial one, proving that the stability is 
ensured, regardless of the various values of the 
parameters k. 
In order to show in a more eloquent way the stability 
of the motion equations solutions, we also used 
another representation, namely the representation in 
the phases plane, involving both position and 
velocity. Thus, in fig.5, we represented the phases 
plane for the first perturbation given by f1, while in 
fig.6, the second pertrubation given by f2 was 
represented. 

 
Fig.5 
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Fig.6 
In order to express other types of perturbations, like 
strong wind blows, tides, waves or some kinds of 
vibrations, we introduced a step by step function 
g(t), using again variable parameters. The 
perturbations we get are represented in fig.7 and 
fig.8. Thus, for ))t4exp(1(k)t(1g −−=  
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while for ))tkexp(1(4)t(2g −−= , the function 
representation becomes 
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By applying the perturbation given by the variable 
functions g1(t) and g2(t) shown above, by 
comparison to the stationary solution given by the 
homogeneous solution, we get the representations in 
fig.9 and fig.10. 
Analyzing the obtained results we can see that 
though the effect seems a little more powerful than 
in the previous case (dotted lines), the stability will 
not be lost, the solutions remain in the vicinity of the 
non perturbed one (solid line). 
 
 
 

 

Fig.9 

Fig.10 
As we did in the previous situation we used the 
representations in the phases plane to emphasize the 
solutions stability, by presenting the dependence 
between the position and velocity. The results are 
expressed in fig.11 for the perturbation g1 and in 
fig.12 for the pertrubation expressed by g2. The 
significance of the lines remains the same. 

1 0 1 2 3
4

2

0

2
2

3.025−

xo t( )1

xg3 k t, 1,( )

2.1570.762− xo t( )0 xg3 k t, 0,( ),  
Fig.11 

The representations in the phases plane prove again 
the fact that after the perturbations, the solutions of 
the motions equations tend to return to the vicinity 
of the trajectory given by the not perturbed motion. 
Of course the evolutions are not identical but 
obviously the systems tends to stability, ensuring 
thus the correct indications of the gyroscopic 
devices even subjected to external perturbing 
factors. 

3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 2007           281



1 0 1 2
4

2

0

22

2.376−

xo t( )1

xg4 k t, 1,( )

1.4710.762− xo t( )0 xg4 k t, 0,( ),  
Fig.12 

 
 

4   Conclusion 
The gyroscopic devices used in many applications 
like aircrafts, ships or some landvehicles should be 
reliable instruments, they indicating the position, 
velocity, trajectory and many other parameters, 
which are vital for the safe operation of these means 
of transportation. Unfortunately they are subjected 
to the influence of some external factors that can not 
be avoided. This is why, the main component part of 
these devices, the gyroscope should be able to 
compensate the results of these perturbations. 
By representing the solutions of the motion 
equqtions for a dynamically tuned gyroscope, we 
were able to prove the following: 

• in case of shocks or small impacts, 
simulated by help of various impulse type 
functions, the general solutions remain 
tightly in the vicinity of the homogeneous 
solutions (meaning the motion without 
perturbations) 

• in case of repeated wind blows, tides, waves 
or vibrations, simulated by step by step 
functions, the influence is greater but still 
the trajectories of the general solutions 
return fast to the vicinity of the 
homogeneous one. 

So, the dynamically tuned gyroscope ensures the 
stability by itself, without introducing expensive 
and bulky correction loops or other correcting 

devices, as when we are dealing with classical 
gyroscopes. 
The future research will be directed towards some 
random types of perturbations and checking the 
results on test stands. Of course, for any type of 
perturbation that might occur, we may start with the 
less expensive way of checking stability, using 
mathematical models and MathCAD 
representations. 
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