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Abstract: - This paper describes a new method for authentication and integrity where the ciphertext is obtained 
using block upper triangular matrices with elements in pZ , in which the discrete logarithm problem (DLP) 
defined over a finite group is used. In the proposed public key cryptosystem, the encryption requires very few 
operations and decryption is equivalent to the DLP and, finally, the signature scheme presented is based on the 
ElGamal signature scheme and requires the original message in order to verify the signature. With this system 
we get a large key space without increasing the difficulty of the problem. 
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1   Introduction 
In order to establish a confidential channel between 
two users of a network, classical single-key 
cryptography requires them to exchange a common 
secret key over a secure channel. This may work if 
the network is small and local, but it is infeasible in 
non-local or large networks.  

To simplify the key exchange problem, modern 
public-key cryptography provides a mechanism in 
which the keys to be exchanged do not need to be 
secret. In such a framework, every user possesses a 
key pair consisting of a (non-secret) public key and a 
(secret) private key; only public keys are published.  

They are used to encrypt the messages to be sent 
to the owner of the key or to verify digital signatures 
issued by the owner of the key. Before using 
someone else’s public key to encrypt a message or 
verify a signature, one should make sure that the key 
really belongs to the intended recipient or the 
indicated issuer of the signature.  

Achieving authenticity of public keys can be 
done in several ways. Public key cryptosystems are 
essential for electronic commerce or electronic 
banking transactions; they assure privacy as well as 
integrity of the transactions between two parties. 
Digital signatures are used to sign electronic 
documents and they are also mostly based on public-
key techniques. 

A lot of popular public-key encryption systems 
are based on number-theoretic problems such as 
factoring integers or finding discrete logarithms. The 

underlying algebraic structures are, very often, 
abelian groups; this is especially true in the case of 
the Diffie-Hellman method (DH, see [5]), that was 
the first practical public key technique and 
introduced in 1976.  

The Discrete Logarithm Problem (DLP, see  
[4, 11, 12]) is, together with the Integer Factoring 
Problem (IFP) and the Elliptic Curve DLP (ECDLP, 
see [2]), one of the main problems upon which 
public-key cryptosystems are built. Thus, efficiently 
computable groups where the DLP is hard to break 
are very important in cryptography. In recent years, 
cryptographic research has become more and more 
important due to the increasing number of 
application areas related to the field, requiring data 
confidentiality, authentication and integrity. 

The method presented in this paper, generalises 
the DH approach to a group based on the powers of a 
block upper triangular matrix, which is a very 
flexible and practical technique. 

The usual sizes for the keys in the IFP or DLP 
are around 1024 binary digits, existing well known 
algorithms of sub-exponential order that solve these 
problems (see [7, 9, 10]). 

The so called square root algorithms (see  
[8, 13, 14, 16]) reach an order of complexity p  

where p  is the greater prime factor of the order of 
the group. This is not enough to be used in big and 
arbitrary finite groups, but if this order does not have 
great prime factors, these algorithms can be 
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practical. Therefore it is necessary that the order of 
the group in which we are working has great prime 
factors. 

Our system is capable of increasing the 
computational cost required for a successful attack 
on the generated DLP for equivalent key sizes. 

The rest of the paper is divided as follows:  
section 2 shows some properties necessary for the 
proposed cryptosystem. Section 3 is divided in 
several subsections: a key exchange protocol, an 
encryption scheme and a digital signature scheme. 
Finally, several conclusions about the system are 
given in section 4. 
 
2   Preliminaries 
Some basic linear algebra properties, necessary for 
the purpose of the paper, are presented in this 
section; for a more in depth treatment see [1, 3]. 

Given p a prime number and ,r s∈� , we denote 
by ( )r s pMat × Z  the matrices of size r s× , with 
elements in pZ , and by ( )r pGL Z  and ( )s pGL Z  the 
invertible matrices of size r r×  and s s× . 

We define 
 
 
 
 

Theorem 1 The set θ  has a structure of a non 
abelian group for the product of matrices. 
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Also, if 0 ,t h≤ ≤  then 
 
 ( ) ( ) ( )h t h t t h tX A X X B− −= + , (3) 
 ( ) ( ) ( )h h t h h t tX A X X B− −= + . (4) 

 
As a consequence, in the case t = 1 we have 
 
 ( ) ( 1) 1h h hX AX XB− −= + , 

 ( ) 1 ( 1)h h hX A X X B− −= + , 
 
and, taking a, b integers such as 0a b+ ≥ , we have 
 
 ( ) ( ) ( ) .a b a b a bX A X X B+ = +  (5) 

 
In this scheme, the key space is bound to the order of 
the group generated by the M matrices. For this 
reason, we present next the way to guarantee that this 
order is sufficiently high. 

Let 1
0 1 1( ) r r

rf x a a x a x x−
−= + + + +L  a monic 
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its companion matrix. If ( )f x  is a primitive 
polynomial then the order of  A  is exactly 1np − . 
Consequently, if we work in [ ]p xZ , it is possible to 
easily construct matrices whose order is maximal. 

Constructing matrix M using primitive 
polynomials we can guarantee a certain order. 

Let 
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be two primitive polynomials in [ ]p xZ , and ,A B  
the corresponding associated matrices; let P, Q be 
two invertible matrices, 1A PAP−=  and 1B QBQ−= . 

With this construction, the order of M is 
( ) ( 1, 1);r so M lcm p p= − −  this number will be 

maximal if we take r and s prime. 
In table 1, where the value that appears in the 

column o(M) represents the number of decimal digits 
(the integer 2128 has 39 digits), it can be observed 
that the values of r and s do not need to be very big 
to optimize the order.  

It is easy to reduce a generic DLP in a cyclic 
group (with order ( )o M ) whose factorization is 
known. It is very important in the election of the 
group that the order is prime or at least with very big 
prime factors. So if ( )o M  is a prime number, it will 

, ( ), ( ), ( ) .r p s p r s p
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require on the order of m  operations to compute 
the discrete logarithm in group θ . 

 
Table 1. Order of M, for different values of p, r and s 

p r s o(M)   p r s o(M) 
3 32 31 30  29 31 32 82  

 48 47 39   47 48 97 
 64 63 47   60 61 103 
 130 131 145   130 131 311 

5 32 31 38  31 16 15 40 
 30 33 39   32 31 87 
 64 63 61   64 63 111 
 130 131 184   131 131 342 

7 24 27 39  251 12 13 46 
 32 31 43   32 31 276 
 64 63 70   64 63 457 
 130 131 213   130 131 1379 

11 22 21 39  257 9 10 40 
 32 31 50   32 31 287 
 64 63 77   64 63 479 
 130 131 239   130 131 1479 

 
3   The algorithms 

 
3.1   Key exchange protocol 
We will see now the proposed system of block 
matrices applied to the DH key exchange protocol. 

Let U and V be two interlocutors who wish to 
exchange a key, then 

 
1. U and V agree on p∈Z ,  
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2. U randomly generates two private keys r, s 
with 11 r m≤ ≤ , 21 s m≤ ≤ , computes  

 1 2
r sC M M=  and publishes this value. 

3. V randomly generates two private keys v, w 
with 11 v m≤ ≤ , 21 w m≤ ≤ , computes 
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 and publishes this matrix. 
4. U calculates 1 2

r sM M− − and 
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5. The public key of U and V are respectively C 

and D. 
 

In this way, the key shared by U and V is F, now 
both interlocutors, share a common and secret 
element.  

An attacker could know p and M, but to obtain 
the shared secret would have to face a problem with 
a complexity similar to that of the DLP (see [4]). 

 
3.2   Data encryption 
We have to start from the same public and private 
elements seen previously in the key exchange 
protocol (which we suppose already done). 

The interlocutor U wishes to, privately, send a 
message to V. The message must be coded as a 
matrix ( )r s pMat ×Δ∈ Z . 

 
Encryption: 
 
1. U builds the matrices 

 1

1

and ,
A

T F
B
Δ⎡ ⎤

= ⎢ ⎥
⎣ ⎦0

 

that are invertible since A1, A2, B1 and B2  are 
invertible too. 

2. U computes matrix C TF=  and sends this 
matrix to V. 

 
Decryption: 
 
1. V computes the inverse of the matrix F. 
2. V obtains T  carrying out the product 1CF − . 
3. V recovers the message Δ  selecting, the 

respective block of T . 
 

With this, the functions of encryption and decryption 
of the interlocutor V would be respectively 

 
1. 

2
( )

k
E TFΔ = . 

2. 
2

1( )
k

D C CF T−= = . 

 
With the appropriate quick exponentiation 
algorithms (see [4]), the powers of the matrices can 
be computed efficiently. 

The complexity of the problem that an attacker 
would face is in the order of that of the DLP, acting, 
in effect, as a deterrent for a possible attack. 
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3.3   Signature scheme 
We propose a digital signature scheme that requires 
the original message in order to verify the signature. 

The scheme, that follows, is based on the 
ElGamal (see [6]) digital signature scheme. 

We suppose that the users U and V have 
exchanged the key F, and U has sent the message Δ  
to V, according to the previous protocol. If the 
transmitter U wishes to digitally sign the message Δ  
proceeds in the following way 

 
1. U generates a random number r. 
2. U computes rF . 
3. With T computes rQ T F= − . 
4. The digital signature is ( , )r Q . 

 
If the receiver wishes to verify the digital signature 
of U, he proceeds in the following way 

 
1. V computes rF  and then rQ F T+ =  

 
2. V extracts de corresponding block of T  

named Y and compares ∆ and Y , turning out 
to be an authentic signature if YΔ = and 
false if YΔ ≠ . 

 
4   Conclusions 
We have presented a public key cryptosystem based 
on a generalization of the DLP for block matrices 
with elements in pZ , with the advantage of reducing 
the required key length for a given level of security. 
This cryptosystem provides an efficient protection 
against common attacks without the need of bigger 
key sizes. 

We have defined a set of matrices θ  constructed 
using primitive polynomials.  Due to this we can 
work with big groups, without the need to use neither 
enormous matrices nor high numbers. 

Given two parties, the key exchange protocol 
guarantees that both parties share a secret element of 
set G; the public key cryptosystem defined assures 
data confidentiality and the digital signature scheme 
guarantees authentication and integrity. 
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