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Abstract: -A hybrid model of a probabilistic and non-probabilistic reliability theory is developed to predict the 
structural reliability when the probabilistic characteristics parameters of structural properties are imprecisely 
known. In this study, these parameters are described by appropriate ellipsoid. Interval of the structural reliability 
will be sought, i.e. estimating the worst possible reliability and the best possible reliability by ellipsoid-bound 
convex model method. A numerical example of a 60-bar power pagoda is used to illustrate the feasibility and 
validity of the proposed theory. 
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1 Introduction 
Structural reliability analysis plays an important role 
in the analysis and design of structures. In the 
engineering applications, probabilistic reliability 
theory appears to be presently the most important 
method[1-3]. The recent researches show that the 
reliability sensitivity of structure system strongly 
depends on the parameters of the probability 
model[4-8]. However, very often, sufficient 
information on the probabilistic characteristics is 
absent, and as a result, one may possess only 
imprecise or limited data on the probabilistic 
characteristics. The natural question arises as to how 
to deal with this situation which is almost invariably 
encountered in an engineering practice. There are 
several alternative approaches to deal with these 
problems, including probabilistic (random) 
description, fuzzy sets description and convex set 
description. But almost total lack of communication. 
Stochasticians almost exclusively utilize 
probabilistic methods and this models are generally 
informative-intensive[2,3,9], analysts of fuzzy sets 
employ fuzzy logic[10], whereas investigators dealing 
with anti-optimization (i.e. convex modeling, interval 
analysis) utilize models based on 
unknown-but-bounded quantities[5,8]. Therefore, the 
development of rigourous mathematical methods of 
combining the existing information for obtaining 
general estimates of the reliability of the entire 
system represents an actual problem[5,6]. Such a 
combination of the probabilistic and 
non-probabilistic analysis approach was performed 
in the shuttle applications by Elishakoff, Lin and 
Zhu[11] as well as for the analysis of uncertainty in 

passenger aircraft design for composite materials by 
Elishakoff, Li and Starnes[12]. This analysis is 
referred to also as robust uncertainty modeling or 
info-gap uncertainty[13,14]. 
In this study, we will combine ellipsoid-bound 
convex model analysis method with probabilistic 
methodology to evaluate the lower bounds and upper 
bounds of the structural reliability index and 
reliability. These bounds will be very useful in 
practice and could predict the maximum and 
minimum reliability when the experimental data are 
very limited. 
 
 
2 Probabilistic Theory in Structural 
Reliability 
Reliability analysis is to analytically formulate the 
failure given a failure criteria or failure mode. As a 
simplification, it is assumed that all states of the 
structure are divided into two states: failure state and 
safe state. Define the limit state function or failure 
function that represents the working state of 
structures as 

( )M g X=  (1) 
where 1 2( , , , )nX X X X= "  is an n-dimension 
random variable vector. If 0M > , the structure is in 
the safe state, and if 0M < , the structure is in the 
failure state. 0M =  defines the limit state surface 
which separates the failure region from the safe 
region. Given a limit state function ( )M g X=  and 
a joint density function ( )Xf x  of the random vector 
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1 2( , , , )nX X X X= " , the structural reliability or 
probability of survival R  is computed by 

( ) 0
( )Xg X

R f x dx
>

= ∫∫ ∫"  (2) 

The probability of failure FP  is the complement of 
R  and is computed as (1 )R− . 
In general, an analytical evaluation of the integral 
given by Eq (2) is not possible due to the complexity 
of both ( )Xf x  and ( )g X . Also, if the number of 
random variables is large, a numerical integration of 
the problem is not feasible. Therefore, approximate 
method, first order reliability method (FORM), is 
used to obtain the failure probability. The description 
of this method can be divided into three steps. In the 
first step, the vector of basic variables 

1 2( , , , )nX X X X= " is transformed into an 
independent standard (zero mean and unit standard 
deviation) normal vector 1 2( , , , )nY Y Y Y= "  using a 
probability preserving transformation. In the second 
step, the failure surface in the y-space is linearly 
approximated. In the final step, the probability 
content of the y-space can be exactly computed for 
the linear domain. 
The structural reliability is given by 

{ ( ) 0}R P g X= >  (3) 
where T

ki XXX ),,( "=  is the basic variable and 
( )g X  is the nonlinear failure function. The 

structural reliability R  could be estimated by the 
following presented method. Suppose that there 
exists a transformation )(XTY = , which can 
transform the variable T

ki XXX ),,( "=  to the 
independent standard normal variable 

T
ki YYY ),,( "= . Then Eq.(3) can be transformed 

into 

1

( 0) ( ( ) 0)
( ( ( )) 0) ( ( ) 0)

R P M P g X
P g T Y P h Y−

= > = >

= > = >
 (4) 

where 1( ) ( ( ))h Y g T Y−= . If FORM is used, by 
virtue of the linearization ( )h Y Yβ α≈ +  and the 
transformation Z Yα= , then Z  becomes a standard 
normal variable, and R  can be approximated as 
 ( ( ) 0) ( ) ( )R P h Y P Z β β= > ≈ > − = Φ  (5) 
where ( )Φ ⋅  is the standard normal distribution 

function 21( ) exp( 2)
2

x

x t dt
π −∞

Φ = −∫  and the 

so-called reliability index β  is defined as 

M

M

μβ
σ

=  (6) 

The one-one relation between β  and R  is given by 
the following equation 

( )R β= Φ    or   1( )Rβ −= Φ  (7) 
Structural reliability relies on two kinds of design 
parameters: one is the stress or distortion of the 
structures or component parts caused by the various 
external loads, which is called stress resultant, 
denoted as s ; the other is the capacity of enduring 
the loads for structures, component parts or their 
materials, which is called resistance or intensity, 
denoted as r . In the construction time and service 
time of structures, they exist in the manners of either 
Safe or Failure. In this paper, the limit state function 

( )M g X=  is taken as the linear function of s  and 
r . 

( )M g X r s= = −  (8) 
In the analysis of probabilistic reliability, the stress 
resultant s  and resistance r  are supposed to be 
random variables, hence M  is also a random 
variable. 
In the limit state function (8), it is assumed that r  
and s  obey the same kind of probabilistic 
distribution , and their mean values and standard 
variances are, respectively, rμ , sμ  and rσ , sσ . 
Hence, the distribution of the limit state function 
M r s= −  is the same with r  and s , and its mean 
value and standard variance are, respectively, 

M r sμ μ μ= −    ,   2 2
M r sσ σ σ= +  (9) 

The structural reliability index β  and the structural 
reliability R  can be obtained by use of Eqs.(5), (6) 
and (9) 

2 2
r sM

M r s

μ μμβ
σ σ σ

−
= =

+
 (10) 

and 

2 2
( ) r s

r s

R μ μβ
σ σ

⎛ ⎞−⎜ ⎟= Φ = Φ
⎜ ⎟+⎝ ⎠

 (11) 

Eqs.(10) and (11) are the two basic formulas for 
calculating the structural reliability index and 
reliability. From the above analysis, we can conclude 
that the evaluation of the reliability index hinges on 
the calculations of the mean values and standard 
variances of the structural stress and intensity. 
 
 
3 Limitations of Pure Probability 
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The mathematical theory of probability has proven 
useful in many technological applications. However, 
it has limitations which, when clearly identified, 
facilitate our understanding of the non-probabilistic 
alternatives. 
One main criticism of probabilistic concepts of 
uncertainty arises in discussion of prior probability 
and Bayesian inference and decision theory. A 
classical objection to Bayesian statistics hits at the 
source of the prior distribution and utility functions. 
Uniqueness is formulating prior distributions is 
illusive: a given quantity of prior information is often 
not represented by a unique prior probability 
distribution. The difficulty of quantifying prior 
knowledge is seen quite clearly in such quandaries as 
the 3-box riddle[14], the prisoner’s dilemma and 
similar problems where alternative decisions each 
seem fully consistent with the initial information. 
Probabilistic models have been used in recent 
decades to represent the uncertainty in engineering. 
The concern about these models arises from the fact 
that a stochastic model represents typical events 
much more reliably than rare events, especially when 
the model is based on limited information. Rare 
events in probabilistic models are described by the 
tails of the distribution, while probability 
distributions are usually specified in terms of mean 
and mean-variation parameters. This makes 
probabilistic models risky design tools, since it is rare 
events, the catastrophic ones, which must underlie 
the reliable design. 
When a probabilistic description of the unknown 
elements is at hand, one is naturally led to consider 
stochastic models. When only partial information, or 
no information at all, is available, however, there is 
understandably a reluctance to rely on such models. 
In presuming that probability distributions exist they 
seem inherently misdirected. It can be seen that one’s 
thinking about uncertainty can, and sometimes 
should be non-probabilistic. 
Furthermore, according to the law of large 
numbers[15], only if the number of observations in the 
sample becomes large — that is, n  approaches 
infinity, the sample mean and variance converge to 
the real mean value and variance. However, in 
practice, n  may be impossible to be large enough to 
obtain the exact mean and variance value so that there 
often exists uncertainties in the parameters of 
probabilistic characteristics. 
 
 
4 Hybrid Model for Structural 
Reliability 

Indeed, the indeterminacy about the uncertain 
variables involved could be stated in terms of these 
variables belonging to certain sets, such as 

 The uncertain parameter x  is bounded, 
x a≤  (12) 
 The uncertain function has envelope bounds, 

( ) ( ) ( )lower upperx t x t x t≤ ≤  (13) 

where ( )lowerx t  and ( )upperx t  are deterministic 
functions which delimit the range of variation of 

( )x t . 
 The uncertain function has an integral square 

bound, 

2 ( )x t dt a
+∞

−∞

≤∫  (14) 

 The uncertain parameters vector has an 
instantaneous ellipsoid-bound, 

2
0 0( ) ( )Tx x W x x α− − ≤  (15) 

where W  is a positive definite matrix, 0 0( )ix x=  is 
the nominal value of the vector ( )ix x= , and α  is 
the radius of the convex set. 
Consider a realistic situation when on one hand the 
mean values rμ  and sμ  and the standard deviations 

rσ  and sσ  of the resistance r  and the stress 
resultant s  are uncertain, but on the other hand, 
insufficient information is available on rμ , sμ  and 

rσ , sσ  to justify the above probabilistic framework. 
It is assumed that we possess only scarce information 
on the probabilistic characters rμ , sμ  and rσ , sσ , 
namely, the uncertainties in the mean values rμ , sμ  
and the standard deviations rσ , sσ  are bounded sets 
as the fourth kind of convex modelling mentioned 
above 

2 2
20 0

12 2

2 2
20 0
22 2

( ) ( )

( ) ( )

r r s s

r s

r r s s

r s

e e

g g

μ μ μ μ θ

σ σ σ σ θ

− −
+ ≤

− −
+ ≤

 (16) 

where 0rμ , 0sμ  and 0rσ , 0sσ  are the center points 
of the ellipsoids, and are chosen as the nominal or 
typical input; 0

re , 0
se  and 0

rg , 0
sg  are the radii of the 

ellipsoids; 1θ  and 2θ  are positive constants and 
determine the sizes of the ellipsoids. These values are 
all based on available limited information on the 
resistance r  and the stress resultant s . 
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Let us consider the structural reliability (11) subject 
to the constraint condition (16). For convenience, the 
constraint conditions (16) may be written as follows 

1 1

2 2
20 0

12 2

( , , , , )

( ) ( )( , ) :

r s r s

r r s s
r s

r s

Z e e

e e

μ μ θ

μ μ μ μμ μ θ
⎧ ⎫− −

= + ≤⎨ ⎬
⎩ ⎭

 (17) 

and 
2 2

2 2
20 0
22 2

( , , , , )

( ) ( )( , ) :

r s r s

r r s s
r s

r s

Z g g

g g

σ σ θ

σ σ σ σσ σ θ
⎧ ⎫− −

= + ≤⎨ ⎬
⎩ ⎭

 (18) 

There are many applications in Eq.(11) with the 
constraint conditions (16) or (17) and (18), where the 
mean values rμ  and sμ  and the standard deviations 

rσ  and sσ  are not precisely known. Because the 
mean values rμ  and sμ  and the standard deviations 

rσ  and sσ  are uncertain but bounded, the associated 
probabilistic reliability of the structure similarly 
constitutes the bounded variable. That is to say, the 
probabilistic reliability of the structure with bounded 
probabilistic characteristics will become a set as 
follows 

2 2

2 2
20 0

12 2

2 2
20 0
22 2

( ) : ,

( ) ( ) ,

( ) ( )

r s

r s

r r s s

r s

r r s s

r s

R

e e

g g

μ μβ β
σ σ

μ μ μ μ θ

σ σ σ σ θ

⎧ −⎪Γ = = Φ =⎨
+⎪⎩

− −
+ ≤

⎫− −
+ ≤ ⎬

⎭

 (19) 

We should stress that Γ  may be generally of 
complicated geometric shape so that it may be 
usually impractical to try to solve them. Instead, in 
this study, we are interested in the set or the interval 
containing the structural probability reliability with 
uncertain but bounded probabilistic parameters. 
Therefore, it is a common practice to seek the interval 
of the probabilistic reliability 

min max[ , ] [ , ]IR R R R R= =  (20) 
where 

minR R= , maxR R=  (21) 
which is the smallest width interval enclosing all 
possible probabilistic reliability values. minR  is the 
worst possible reliability or minimum value and 

maxR  is the best possible reliablity or maximum. 
Obviously, the maximum value problem and the 
minimum value problem in Eq.(20) are global 
optimization problems. 

5 Determination for Intervals of 
Structural Reliability Index and 
Reliability 
In this section, the intervals of the structural 
reliability index and reliability will be computed. 
Based on Eq.(7) and the monotonicity of function 
(11), the extreme value problem of the structural 
reliability (20) can be transformed into the following 
extreme value problem of the structural reliability 
index 

2 2

2 2
20 0

12 2

2 2
20 0
22 2

: ,

( ) ( ) ,

( ) ( )

r s

r s

r r s s

r s

r r s s

r s

e e

g g

μ μβ β
σ σ

μ μ μ μ θ

σ σ σ σ θ

⎧ −⎪Η = =⎨
+⎪⎩

− −
+ ≤

⎫− −
+ ≤ ⎬

⎭

 (22) 

Thus, the set or interval of the structural reliability 
index can be expressed as 

min max[ , ] [ , ]Iβ β β β β= =  (23) 
where 

minβ β=   ,  maxβ β=  (24) 
Under the condition that Yμ  and Yσ  are statistically 
independent, let us consider the extreme value 
problem of the structural reliability index β . Clearly, 
based on the multi-objective optimization theory, the 
maximum value and the minimum value can be, 
respectively, expressed as 

min

max
max )(

)(
Y

Y

σ
μβ =   ,  

max

min
min )(

)(
Y

Y

σ
μβ =  (25) 

where Y r sμ μ μ= −  and 2 2
Y r sσ σ σ= + . Thus, 

the extreme value problem of the structural reliability 
index is transformed into the extreme values 
problems of Yμ  and Yσ . 
For the extreme value problem 

srYextreme μμμ −=  (26) 
subject to 

2
12

2
0

2

2
0 )()( θμμμμ

≤
−

+
−

s

ss

r

rr

ee
 (27) 

According to the optimization theory, since Yμ  is a 
linear function of uncertain parameters rμ  and sμ , 
and ),,,,( 11 θμμ srsr eeZ  is a convex set, the extreme 
values of Yμ  will occur on the boundary of the set 

),,,,( 11 θμμ srsr eeZ . The boundary of the set 
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),,,,( 11 θμμ srsr eeZ  represents an ellipsoidal shell, 
i.e., 

1 1

2 2
20 0

12 2

( , , , , )

( ) ( )( , ) :

r s r s

r r s s
r s

r s

S e e

e e

μ μ θ

μ μ μ μμ μ θ
⎧ ⎫− −

= + =⎨ ⎬
⎩ ⎭

 (28) 

By the method of Lagrange multipliers, the 
Lagrangian function can be written as 

))()(( 2
12

2
0

2

2
0

11 θμμμμλμμ −
−

+
−

+−=
s

ss

r

rr
sr ee

L

 (29) 
where 1λ  is the Lagrange multiplier. 
Necessary conditions for taking the extreme values 
are 

0)(21 2
0

1
1 =

−
+=

∂
∂

r

rr

r e
L μμλ
μ  (30) 

and 

0)(21 2
0

1
1 =

−
+−=

∂
∂

s

ss

s e
L μμλ
μ  (31) 

resulting in 

1

2

0 2λ
μμ r

rr
e

−=−  (32) 

and 

1

2

0 2λ
μμ s

ss
e

=−  (33) 

Substitution of Eqs.(32) and (33) into the following 
constraint condition 

2
12

2
0

2

2
0 )()( θμμμμ

=
−

+
−

s

ss

r

rr

ee
 (34) 

The Lagrange multiplier is obtained as 

1

22

1 2θ
λ sr ee +

±=  (35) 

Substituting Eq.(35) into Eqs.(32) and (33) yields the 
extreme points of the mean values rμ  and sμ  

22
1

2

0
sr

r
rr

ee
e

+
=

θμμ ∓  (36) 

and 

22
1

2

0
sr

s
ss

ee
e

+
±=

θμμ  (37) 

So the maximum values and the minimum values of 
the mean values rμ  and sμ  can be expressed as  

2
1

max 0 2 2

2
1

min 0 2 2

( )

( )

r
r r

r s

r
r r

r s

e
e e

e
e e

θμ μ

θμ μ

= +
+

= −
+

, (38) 

and 
2

1
max 0 2 2

2
1

min 0 2 2

( )

( )

s
s s

r s

s
s s

r s

e
e e

e
e e

θμ μ

θμ μ

= +
+

= −
+

, (39) 

Thus, the maximum values and the minimum values 
of Yμ  can be determined by 

22
100minmaxmax )()()( srsrsrY ee ++−=−= θμμμμμ

 (40) 
and 

22
100maxminmin )()()( srsrsrY ee +−−=−= θμμμμμ

 (41) 
For the extreme value problem 

22
srYextreme σσσ +=  (42) 

subject to 
2 2

20 0
22 2

( ) ( )r r s s

r sg g
σ σ σ σ θ− −

+ ≤  (43) 

In virtue of the following variable transformations 
 

0 0,r r r s s su uσ σ σ σ= − = −  (44) 
The optimization problem (42) can be converted into 
the following form 

2 2
0 0

0

( ) ( )

2

Y r r s s

T T

extreme u u

g

σ σ σ

ϕ δ δ δ

= + + +

= + +
 (45) 

subject to the constraint condition 
22

2
22 2

sr

r s

uu
g g

θ+ ≤  (46) 

where 2 2
0 0 0( , )T

r sϕ σ σ= , 0 0( , )T
r sg σ σ= , 

( , )T
r su uδ = . 

For convenience, the constraint condition (46) can be 
written 

Tδ Ωδ θ 2
2≤  (47) 

where 2 2

1 1( , )
r s

diag
g g

Ω = . 
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Obviously, the extreme value problem extremeY )(σ  is 
equivalent to the extreme value problem 

0( 2 )T T
extremegϕ δ δ δ+ + , i.e., 

0( ) ( 2 )T T
Y extreme extremegσ ϕ δ δ δ= + +  (48) 

Namely, the following extreme value problem will be 
solved 

0 2 T Tw gϕ δ δ δ= + +  (49) 
subject to the constraint condition (47). 
By virtue of the method of Lagrange multipliers, and 
define the Lagrangian function as  

2
0 2( , ) 2 ( )T T TL gδ η ϕ δ δ δ η δ Ωδ θ= + + + −  (50) 

where η  is the Lagrange multiplier. According to the 
extreme condition, we can obtain 

2 2 2 0L g δ η δ
δ

∂
= + + Ω =

∂
 (51) 

Moreover, the constraint condition must be satisfied 
Tδ Ωδ θ 2

2≤  (52) 
Since Eq.(52) is an inequality, the Lagrange 
multiplier must satisfy one of the following 
relations[15] 

0η =    if   Tδ Ωδ θ 2
2<  (53) 

and 
0η ≥    if   Tδ Ωδ θ 2

2=  (54) 
From Eq.(51) and (53), we can obtain 

gδ = −  (55) 
Substitution of Eq.(55) into Eq.(49) yields 

( )
0 0r T

extw g gϕ= − =  (56) 
By solving Eq.(51) and Eq.(54), we can obtain two 
Lagrange multiplier 1η  and 2η . By substituting them 
into Eq.(49), two extremum values can be obtained as 
follows, respectively 

( ) 1
0 1

1 1
1 1

2 ( )

2 ( ) ( )

s T
ext

T

w g I g

g I I g

ϕ η Ω

η Ω η Ω

−

− −

= − +

+ + +
 (57) 

and 
( ) 1

0 2

1 1
2 2

2 ( )

2 ( ) ( )

t T
ext

T

w g I g

g I I g

ϕ η Ω

η Ω η Ω

−

− −

= − +

+ + +
 (58) 

From the above equations (56), (57)and (58), three 
possible extremum values are obtained. By choosing 
the maximum value from the three possible 
extremum values as the upper bound of the objective 
function, and the minimum value as the lower bound, 
so we have 

( ) ( ) ( )
max max( , , )r s t

ext ext extw w w w=  (59) 
and 

( ) ( ) ( )
min min( , , )r s t

ext ext extw w w w=  (60) 
Then 

max max( )Y wσ =  (61) 
and 

min min( )Y wσ =  (62) 
In virtue of Eq.(25), from Eqs.(40), (41) and (61), 
(62), the maximum value or upper bound and the 
minimum value or lower bound of the structural 
reliability index can be obtained as follows 

2 2
0 0 1

max
min

r s r se e
w

μ μ θ
β β

− + +
= =  (63) 

and 
2 2

0 0 1
min

max

r s r se e
w

μ μ θ
β β

− − +
= =  (64) 

Consequently, according to the one-one relation (7), 
the best possible value or the upper bound and the 
worst possible value or the lower bound of the 
structural reliability can be calculated, respectively 

( )R β= Φ  (65) 
and  

( )R β= Φ  (66) 
 
 
6 Numerical Example and Discussions 
Consider a 60-bar power pagoda as shown in Fig.1. 
The length of rods can be obtained from Fig.1. Two 
horizontal loads 40000P N=  are applied at node 
21 and 22 respectively. The mean value of Young’s 
modulus and cross-sectional area of the bars are, 
respectively, 11 22.1 10 /E N mμ = ×  and 

3 21.0 10A mμ −= × . The uncertain parameter vector 

( , )TR E A=  is normally distributed with a 
coefficient of variation 0.05. The allowable stress is 
normal distributed, and the distribution form is 

8 6
0 0~ ( , ) (1.5 10 , 6.42 10 )r rr N Nμ σ = × × . The 

mean value and standard variance of the applied 
stress are, respectively, 8

0 1.35 10sμ = × ，
6

0 6.21 10sσ = × . 
The results of Eqs.(10) and (11) calculated by 
deterministic probabilistic characteristics parameters 
are: structural reliability index, 1.6794β = , and 
reliability, 95.3%R = . 
Take into account the uncertainty in the probabilistic 
characteristics rμ , sμ  and rσ , sσ  of the applied 
stress and allowable stress. Suppose that their mean 
values and the standard variances change in the 
following ellipsoids, respectively, 
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2 2
0 0
2 2

1 0 2 0

( ) ( ) 1
( ) ( )

r r s s

r s

μ μ μ μ
α μ α μ

− −
+ ≤ ， 

( ) ( )2 2
0 0
2 2

3 0 4 0

1
( ) ( )

r r s s

r s

σ σ σ σ
α σ α σ

− −
+ ≤  

where 1α , 2α , 3α  and 4α  are uncertain coefficients 
of the ellipsoids semi-radius. In this numerical 
example, they are chosen in such a manner that the 
variations at most will correspond to 5%±  variation 
of each parameter. In practice, the bounds of these 
uncertainties will lie on the measured experiments 
data or experience. 
Results of the calculation of the structural reliability 
index and reliability versus parameter α  based on 
Eqs.(63), (64) and (65), (66) are shown in Table 1, 
Table 2 and Fig.2-Fig.5, where β  and β  are the 
upper bound and lower bound of the structural 
reliability index, and R and R  are the upper bound 
and lower bound of the structural reliability 
corresponding to different cases of coefficient 

, 1, 2, 3, 4i iα = , respectively. Table 1 shows the 

upper bound β  and lower bound β  of the structural 

reliability index versus 1α  and 2α , for 

3 4 0.0α α= = , namely, the mean values are only 
considered to be uncertain and the standard variances 
are deterministic. Whereas in Table 2, the standard 
variances are uncertain, the mean values are 
deterministic, namely 1 2 0.0α α= =  and 

3 4 0.0α α= ≠ . In Table 3, not only the mean value 
but also the standard variable are uncertain. 
Fig.2-Fig.5 depict the varying curves of R  and R  
with the variations of uncertain factors iα  
( 1, 2,3,4)i = . 
The numerical results indicate that uncertainties in 
probabilistic characteristics properties have 
significant effects on the structural reliability. From 
these tables and figures, we can found that interval 
[ β , β ] of the structural reliability index and interval 
[ R , R ] of the structural reliability become wider 
with the increasing of uncertainties of probabilistic 
characteristics parameters.  
 
 
7 Conclusions 
Imprecise or uncertain probabilistic properties which 
are results from small sample random tests or 
incomplete information on uncertain variables are 
considered. A hybrid model of a probabilistic and 

non-probabilistic structural reliability theory is 
presented in this study to predict the variation of the 
structural reliability with uncertain probabilistic 
characteristics parameters. These probabilistic 
characteristics parameters are assumed to be 
described by appropriate ellipsoid. 
Uncertainties in probabilistic characteristics 
properties have significant effects on the structural 
reliability. It is remarkable that this model is able to 
predict the worst possible value and the best possible 
value of the structural reliability index and reliability 
due to uncertainty. The reliability interval will be 
very useful in practice and could be directly 
incorporated into design when experimental data are 
very limited and the conventional probabilistic 
reliability approach cannot be utilized. 
The hybrid model bridge the communication between 
stochasticians and analysts of sets. Consequently, the 
situations that they almost exclusively utilize 
probabilistic methods or anti-optimization methods 
will be broken. 
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Table 1 The structural reliability index β  versus 
1α and 

2α  when (
3 4 0.0α α= = ) 

0.00 0.01 0.03 0.05  

β  β  β  β  β  β  β  β  

0.00 1.67936 1.67936 1.83050 1.52821 2.13278 1.22593 2.43506 0.92365

0.01 1.84729 1.51142 1.90529 1.45342 2.16288 1.19583 2.45350 0.90521

0.02 2.01523 1.34348 2.04767 1.31104 2.24363 1.11508 2.50634 0.85237

0.03 2.18316 1.17555 2.20534 1.15337 2.35716 1.00155 2.58761 0.77110

0.04 2.35110 1.00761 2.36789 0.99082 2.48981 0.86890 2.69046 0.66825

0.05 2.51903 0.83968 2.53253 0.82618 2.63364 0.72507 2.80903 0.54968

 
 

Table 2 The structural reliability index β  versus 3α  and 4α  when ( 1 2 0.0α α= = ) 

0.00 0.01 0.03 0.05  

β  β  β  β  β  β  β  

0.00 1.67936 1.67936 1.67936 1.67936 1.67936 1.67936 1.67936 

0.01 1.67936 1.69131 1.66757 1.69565 1.66337 1.69624 1.66281 

0.02 1.67936 1.69435 1.66462 1.70794 1.65171 1.71151 1.64839 

0.03 1.67936 1.69522 1.66379 1.71573 1.64450 1.72403 1.63694 

0.04 1.67936 1.69556 1.66346 1.72043 1.64020 1.73367 1.62834 

0.05 1.67936 1.69572 1.66330 1.72332 1.63758 1.74086 1.62205 

 

1α

2α

β

3α

4α

β
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Table 3 The structural reliability index β  versus α  ( 1 2 3 4α α α α α= = = = ) 

 
0.01 0.02 0.03 0.04 0.05 

β  1.67936 1.91885 2.16178 2.40821 2.65823 

β  1.67936 1.44322 1.21038 0.98076 0.75430 
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Fig.2 The structural reliability R  versus 

1α ( 3 4 0.0α α= = ) 
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Fig.3 The structural reliability R  versus 

2α ( 3 4 0.0α α= = ) 
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Fig.4 The structural reliability R  versus 

3α ( 1 2 0.0α α= = ) 
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Fig.5 The structural reliability R  versus 

4α ( 1 2 0.0α α= = ) 
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