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Abstract: Effective coefficients problem is solved for the anisotropic medium. The conductivity is assumed to 

be a random multifractal of lognormal distribution. Dimensions of solution domain of the problem are considered 

to be large compared to the sizes of heterogeneities of the medium. Subgrid modeling approach, associated with 

problems of subsurface hydrodynamics is presented. Theoretical result is compared to the results of direct 3D 

numerical modeling and results of conventional perturbation theory. 
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1 Introduction 
In studying an anisotropic heterogeneous medium 

small-scale details of conductivity function are 

considered to be within the statistical approach. 

One can thus introduce effective parameters [1]. 

If dimensions of solution domain of the problem 

are a large compared to the sizes of 

heterogeneities of the medium, the boundary 

conditions influence on the effective 

coefficients is weak. However in this case the 

effective coefficients should be partially taken 
into account in high orders of perturbation theory 

in order to improve the accuracy of the derived 

relationships. To solve such a problem one uses 

renormalization group (RG) methods and subgrid 

modeling method. According to [2], the 

renormalization group methods partially take into 

account high orders of perturbation theory.  Same 

arguments are also applicable to the subgrid 

modeling. RG methods for the filtration theory in 

isotropic medium are developed by many authors 

[3], [4], [5]. In paper [6] authors deduced the 

subgrid formulas for the effective permeability 

using the ideas of Wilson renormalization group 

(RG) [7] for isotropic medium. In the present 

study we derive the subgrid modeling formulas 

for solving a problem of filtration in anisotropic 

fractal porous medium. If a medium is assumed to 

satisfy the refined Kolmogorov’s scaling 

hypothesis [8] equations of subgrid model take an 

especially simple form. Refined formulas of 

perturbation theory are in better agreement with 

the results of direct numerical modeling than the 

formulas of conventional perturbation theory. 

 

2 Statement of the problem 
Let an incompressible fluid flow through a 

heterogeneous medium with a conductivity 

coefficient ( )ε x . At low Reynolds numbers 

filtration velocity v and pressure p are related by 

Darcy’s law ( ) pε= − ∇v x . Incompressibility 

condition 0div =v  yields the equation  

 ( ) ( ) ( ) 00, ( ),
S

p p pi iε∇ ∇ = =x x xx  (1) 

where S  is a boundary of the domain V . 

Suppose the field of conductivity is known. This 

assumes that it is measured at each point x as the 

fluid is pumped through a sample of small size 

0l . A random function of spatial coordinates 

( )ε x  is considered as a limit of 

conductivity ( )
0l

ε x . As 0 0l → , we have 

( ) ( )
0l

ε ε→x x . To pass to a coarser grid 1l , one 

can smooth the resultant field ( )
0l

ε x using the 

scale 1 0l l> . However obtained field is not the 

true conductivity that describes filtration in the 

interval of scales ( )1,l L . Here L  is a maximum 

scale of heterogeneities. To find conductivity on a 

coarser grid, one has to repeat the measurements, 

pumping the fluid through a larger sample of size 

1l . This procedure is necessary since the 

fluctuations of conductivity within the scale 

interval ( )0 1,l l  have are correlated to pressure 

fluctuations induced by them. Similar to [8], we 
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consider a dimensionless field ψ equal to the 

ratio of conductivities smoothed using two 

different scales ( ) ( ) ( )
1

1, , /
l l

l lψ ε ε=x x x , where 

( )lε x  is the conductivity ( )
0l

ε x  smoothed over 

scale l , 1l l< . The field function ( )1, ,l lψ x  has 

too many arguments. We define a simpler field 

( ) ( ) 1 1, , , / | , /l l l l lλϕ ψ λ λ λ== ∂ ∂ =x x , that 

contains the same information. Therefore we have 

the relation  

 
( ) ( )

ln
.

ln
,l

l
l

ε
ϕ

∂
=

∂

x
x  (2) 

The solution of Eq. (2) has the form  

 ( ) ( )
0

1
0 1

1
0

exp , .

L

l
l

dl
l

l
ϕε ε

 
− 
  

= ∫ xx  (3) 

We suppose that the conductivity has 

heterogeneities of the scale 1l   from the interval 

( )0 ,l L , where 0l  is minimum and L  is maximum 

scale of dimensions 3L V� , ( ) ( )
0l

ε ε=x x . The 

field ( ),lϕ x  is assumed to be statistically 

homogeneous so a correlation function is 

 
( )

1 1

1

( , ) , ) ( , ) ( , )

, ,

(l l l l

l l

ϕ ϕ ϕ ϕ−

= Φ

x y x y

x y−−−−
 

Here  is probability averaging. For simplicity 

we use the same notation Φ  in the right-hand 

side. For example if function ϕ  is statistically 

invariant to the scale transform, its correlation 

function is equal to ( )2 2
/i i i

i

x y lα
 

Φ  
 
∑ −−−− , 

where iα  are constants. In this approximation 

fields ( ) ( )1, , ,l lϕ ϕx y  at any ,x y  are considered 

to be statistically independent. This assumption is 

common in the scaling models and reflects the 

decay of statistical dependence when the scales of 

fluctuations become different in magnitude. It 

means that ( ) ( )1, , ,l lϕ ϕx y  are delta correlated in 

the logarithmic scale. The latter was proposed in 

[8]. To describe the probability distribution for 

the integral from (7) for large 0/L l , we use the 

theorem about sums of independent variables. If 

the variance of ( ),lϕ x  at a given point exists, 

then the theorem says that the integral from (7) 

for very large 0/L l  tends to a normal field. In the 

opposite case (the second correlation function 

does not exist), the integral tends to a field 

described by a stable distribution [9]. For 

simplicity, it is assumed that ( ),lϕ x  has normal 

distribution. 

 

3 Subgrid model 
Conductivity function ( )ε x  is divided into two 

components with respect to the scale l . The 

large-scale component (ongrid) ( ),lε x   is 

obtained by statistical averaging over all ( )1,lϕ x  

with 0 1 ,l l l< <  where 0dl l l= −  is small. A 

small-scale (subgrid) component is equal to 

'( ) ( ) ( , )lε ε ε= −x x x : 

0

1 1
0 1 1

1 1

( , ) exp ( , ) exp ( , ) ,
L l

l l

dl dl
l l l

l l
ε ε ϕ ϕ

   
= − −   

   
∫ ∫x x x  

 
0

0

1
1

1

1
1

1

exp ( , )

'( ) ( , ) 1 ,

exp ( , )

l

l

l

l

dl
l

l
l

dl
l

l

ϕ
ε ε

ϕ

  
−  

  = −   −    

∫

∫

x

x x

x

 (4) 

A large-scale (ongrid) component of the pressure 

( , )p lx  is obtained as averaging solutions of Eq. 

(1), in which a large-scale component of 

conductivity is fixed and a small component 

( )'ε x  is a random variable. A subgrid component 

of the pressure is '( ) ( ) ( , )p p p l= −x x x .  

Substituting the expression for ( ), ( )pε x x  in 

Eq.(1) and averaging over the small-scale 

component, we obtain:  

 ( , )( , ) ( , ) '( ) '( ) 0,i i i ll p l p εε ε ∇ ∇ + < ∇ > = x
x x x x (5) 

where 
( , )lε x

 is averaging over 1l l<  when 

( ),lε x is fixed. Second term in Eq.(5) is 

unknown. It cannot be dropped without 

preliminary estimation, since the correlation 

between the conductivity and the pressure 

gradient may be substantial.  The choice of the 

form of the second term in (5) determines the 

subgrid model. This expression is estimated using 

perturbation theory. Subtracting (5) from (1) and 

ignoring the terms of second order of smallness 

including ( , )'( ) '( ) '( ) '( )i i lp p εε ε∇ − < ∇ > xx x x x , we 

obtain the subgrid equation for the pressure: 

 ( )
( )

( ) ( )1
' ' , .

,
i ip p l

l
ε

ε
∆ = − ∇ ∇x x x

x
 (6) 

The variables ( ),lε x , ( ),p lx  in the right-hand 

side of Eq.(6) are considered to be known, these 

variables and their derivatives varying  slower 

than, ( )'ε x  and  their derivatives. Therefore,  

 ( )
( )

( ) ( )1 1
' ' ' ' , ,

4 ,
j j

V

p d p l
l r

ε
πε

≈ ∇ ∇∫x x x x
x

 (7) 

where 'r = x x−−−− . From (7), we obtain  
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( ) ( )
( )

( ) ( ) ( )

,
' '

1
' ' ', ' , ,
4

i l

i j j

V

p

l d l p l
r

σ
ε

ε
π

∇ =

− ∇ ∇ Φ − ∇∫

x
x x

x x x x x
 (8) 

In a quiet deposition environment, natural 

sedimentary rock has a stratified structure. Here 

we assume that the conductivity is isotropic at 

any point of space, but correlation function of the 

conductivity fields is anisotropic. Usually natural 

stratums have this kind of anisotropy. The 

medium is assumed to be to consist of 

homogeneous isotropic blocks close to 

parallelepiped shape. The conductivity of blocks 

is random. If blocks are ordered enough in space 

then the medium is macro anisotropic. One can 

see as an example of stratified medium a medium 

with layers of the different conductivity. The 

scales of the conductivity are assumed to be 

different along the different axes. One needs to 

know the correlation function ( )', lΦ x x−−−− . It is 

admittedly difficult to perform such 

measurements in unconsolidated formation since 

mapping ( )σ x  on a dense grid requires drilling a 

large number of wells. Nevertheless, some field 

measurements of the conductivity reported in the 

literature [10], [11]. We evaluate integral (8) for 

the correlation function 

 ( ) ( )1 ', exp ,l uΦ = −x - x  (9) 

where 

( ) ( )( ) ( )( )2 2 22 2 2

1 1 1 2 2 2 3 3' ' ' /u x x x x x x lα α= − + − + −

From (4), as ( )'ε x has log-normal distribution, 

we have  

 ( ) ( )2
'( ) ' ' ( , ) , / .l l dl lε ε ε≈ Φx x x x  (10) 

Using (10), obtain 

 ( ) ( ) ( )0 1,
' ' ( , ) , / ,i il

p l l p l dl lεε η ε< ∇ > ≈ −Φ ∇
x

x x (11) 

where ( ) ( )0 0,l lΦ =Φ , for 1 2a α< , 1, 2i =  

( ) ( ) ( ) ( )2 2 2

1 1 / 2 arctan / 1/ 1c c c c cη  = + − +  , 

( )2 2 2 2

3 1 1c /α α α= −  and for 1 2a α> ,  

2

1 2 2

1 1 1 1
ln

2 12 1

c c

c cc c
η

− + = − − − 
, 

( )2 2

1 22

2

1

c
α α

α

−
= . 

For 3i =  

 ( ) ( ) ( )3 0 2 3,
' ' ( , ) , / ,

l
p l l p l dl lεε η ε< ∇ > ≈ −Φ ∇

x
x x (12) 

where ( ) ( )2 2

2 1 1 arctan / /c c c cη = + −    and for 

1 2a α> , 

2

2 2

1 1 1
ln 1

2 1

c c

c cc
η

− + = − − 
. Here, the 

integration over the finite volume V  in (8) is 

replaced by the integration with infinite limits, 

because the correlation function Φ  is small 

outside the domain of scale L . Such a substitution 

gives a coarse estimation near to the boundary, 

but this does not affect the determined mean 

values, because 3 .L V� Substituting (11) in Eq. 

(5) in the limit 0l l→ , we come to the expression 

for the effective coefficients, which correctly 

describes a mean value of the filtration velocity: 

( ) ( )1 1
0 1

1

,exp ,

L

l

l
ef

dl
l

l
ϕε ε

 
− 
 

= ∫ xx  

where  

 ( )0
0

ln 1
, 1,2.

ln 2

i

l
i

d
l i

d l

ε
η ϕ = − Φ − = 

 
 (13) 

 

If a function ϕ  is statistically invariant to the 

scale transform, the solution to Eq.(13) has 

especially a simple form: 

 ( )( ) ( )01/ 2

0 0 / i li

l L l L
η ϕε ε − Φ +

=  (14) 

, where the constant 0Lε  describes  the filtration 

velocity for the largest scale 0 .L pε ∇v = −= −= −= −  If 

2 1α α→  this result corresponds to isotropic case  

1 2 1 3/η η= =  [6]. The same scales along axes 

1 2x , x in correlation function (9) are considered 

only to avoid evaluating the elliptic integrals, 

which arise in the process of integration for three 

different scales. For the sake of getting notions 

about the effect of the form of correlation 

function on the effective coefficients let us 

consider approximation of correlation function  

 ( )2

1 1 3

0

i i

i i

, x l / , i , ,

, x l / .

α
α

 ≤ =
Φ = 

>
x

…

 (15) 

One should apply such function to approximate 

the correlation function with great caution, 

because Fourier transform of this function takes a 

negative value for the some frequencies. If iα  are 

all equal in value then function ( )2Φ x is still 

anisotropic since a parallelepiped transforms into 

a cube rather than a sphere. Substituting (14) in 

(8), obtain for 1, 2i =  

 ( )2 2

3 1 2 12arctan / 2 / .η α α α π= +  (16) 

For 3i =  

 ( ) ( )2 2 2

4 3 2 1 12arctan / 2 /η α α α α π= +  (17) 

If 1 2α α=  and parameters 3 4 1/3η η= = , which 

correspond to isotropic case, then ( )2Φ x is 

anisotropic function. Parameters iη  as function 

of 1 2/α α  are in the table 1.  
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Table 1 

1 2/α α  1 2/η η  3 4/η η  

0.01 3
7 76 10

0 985

.

.

−− ×
−  

34 50 10

0 991

.

.

−− ×
−  

0.05 23 69 10

0 926

.

.

−− ×
−  

22 248 10

0 955

.

.

−− ×
−  

0.25 0 148

0 704

.

.

−
−  

0 110
0 780
.
.

−
−  

0.5 0 236

0 527

.

.

−
−  

0 205
0 590
.
.

−
−  

1 0 333

0 333

.

.

−
−  

0 333

0 333

.

.

−
−  

5 
2

0 472

5 58 10

.

. −
−

− ×
 2

0 488

2 45 10

.

. −
−

− ×
 

10 
2

0 490

2 029 10

.

. −
−

− ×
 3

0 497

6 30 10

.

. −
−

− ×
 

20 
3

0 497

6 75 10

.

. −
−

− ×
 3

0 499

1 59 10

.

. −
−

− ×
 

 

It follows from the table that the results of 

calculation of coefficients iη  by function 

( )1 ',lΦ x - x  are close to the results with 

approximation ( )2 ',lΦ x - x  except the case when 

iη  are small. Therefore such approximation of the 

correlation function can be handled by 

computation of the effective coefficients. 

 

3 Numerical modeling 
For the numerical calculation we use 

dimensionless variables. The problem is solved 

for 0  =1 ε  in a unit cube. In a first case the 

pressure is set constant 

1 2 1 20 1
, , 1

y y
p p p p p p

= =
= = − =  on the edges of 

the cube 0y =  and 1y = . On the opposite edges 

of the cube, the pressure is specified by the linear 

relation for y : ( )1 2 1p p p p y= + − . The main 

filtration flow is directed along Y-axis. In second 

case the pressure is set to a constant 

1 20 1
,

z z
p p p p

= =
= =  on the edges of the cube 

0z =  and 1z = . The main filtration flow is 

directed along the Z-axis. The integral in (3), is 

replaced by a finite difference formula, in which 

it is convenient to pass to the logarithm with base 

2 : 

 ( ) ( )
0

2

4

exp ln 2 , .il
i

ε ϕ τ τ
−

=−

 = − ∑ ∆  
x x  (18) 

For the spatial variables, we use 256 256 256× ×  

grid, the scale step 1τ∆ = , 

i iτ τ= ∆ , 4,... 2i = − − , 2 i

il
τ= . The delta 

correlation in the scale logarithm implies that the 

fields are generated independently at each scale 

iτ . We use correlation functions:  

 ( ) ( )1 0, exp / ln 2,l uΦ = Φx - x' - (19) 

( ) ( )( ) ( )( )2 2 22 2 2

1 1 1 2 2 2 3 3' ' ' / ,u x x x x x x lα α= − + − + −

( ) ( )2 0 1, exp / ln 2,l uΦ =Φx -  (20) 

( ) ( ) ( )( )2 2 22 2 2 2

1 1 1 1 2 2 2 1 3 3' ' ' /u x x x x x x lα α α= − + − + −

The structure of the correlation matrix allows us 

to represent it in the form of a direct product of 

four matrices of lower dimensionality and apply 

the algorithm “along rows and columns” for 

numerical simulation [12]. 

0 0.5 1
0

0.5

1

y 

z 

 
Fig.1 Conductivity isolines for three scales in the 

mid-span section: 00.15, 0.3ϕ = Φ = , 

correlation function (18), 1 20 25 1.α α= = . 

 

 Constants 0,ϕ Φ  should be chosen from 

experimental data for natural media [10], [11]. In 

Fig.1, we have self-similar conductivity in the 

mid-span section for formula (18). The scale of 

the extreme fluctuations is 1/ 4L = . It is not 

sufficient to replace statistical averaging by only 

a spatial averaging. We have to add to an 

ensemble averaging. The filtration velocity is 

averaged over eighty realizations with space 

after-averaging. The minimum scale of 

fluctuations is 1/ 64 , which is conditioned by the 

requirement that considered difference problem 

should provide a good approximation to Eq.(1). 

To solve Eq.(1), an iterative method is combined 

with the Fourier transform and the sweep method 

is used [13]. According to the procedure of the 

derivation of the subgrid formulas, we have to 

solve numerically the complete problem. After 

that one has to perform probability averaging 

over small-scale fluctuations to verify the 
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formulas. As a result, we obtain a subgrid term, 

which can be compared to the theoretical 

expression. The probability averaging requires 

multiple solutions of the complete problem. We 

performed a more efficient verification, based on 

the power dependence of the filtration velocity in 

a self-similar medium. We determine 

corresponding mean values using spatial 

averaging and statistical after-averaging to 

calculate same mean values using theoretical 

formulas. We also compare the results obtained 

with our theoretical formulas to the results 

obtained with "ordinary" perturbations theory. 

Effective conductivity should yield the true 

filtration velocity in the scale interval ( , )l L . 

Figures 2-5 show dependences of logarithm of a 

filtration velocity versus the number of scales k  

for 0 0 3.Φ = , 0 15.ϕ = . Lines 1, 2 show 

theoretical result for isotropic and anisotropic 

cases; line 3 shows the results of “conventional” 

perturbation theory; the results of numerical 

modeling are marked with circle and asterisk for 

isotropic and anisotropic cases correspondingly. 

  
 

 

0 1 2 3
−1

−0.5

0

k 

log
2
<v

y
> 1 

2 
3 

 
Fig.2 Main filtration flow is directed along Y-

axis, correlation function (19); 1 20 25 1.α α= = . 

 

 

 

0 1 2 3
−1

−0.5

0

k 

log
2
<v

y
> 1 

2 
3 

 
Fig.3 Main filtration flow is directed along Y-

axis, correlation function (20), 1 21 0 25.α α= = .  

 

 

 

 

 

0 1 2 3
−1

−0.5

0

k 

log
2
<v

z
>

1 

2 

3 

 
Fig.4 Main filtration flow is directed along Z-

axis, correlation function (19), 1 20 25 1.α α= = ;  

 

 

0 1 2 3
−1

−0.5

0

k 

log
2
<v

z
>

1 
2 

3 

 
Fig.5 The main filtration flow is directed along Z-

axis, correlation function (20), 1 21 0 25.α α= = . 

 

 

In figure 1 the flow is directed along Y-axis, the 

scales of the fluctuations in the X, Y- axes are 

greater then scales in Z-axis. Coefficient 1η  is 

small. Mean value of filtration velocity is 

obtained by ordinary perturbation theory (line 3) 

is almost equal to the mean value of velocity 

obtained by formulas (14) and results of the 

numerical modeling. In figure 2 the scales of the 

fluctuations in the Y-axis bigger then scales in X, 

Z- axes, 1 2a α> .The mean value of filtration 

velocity is approximately equal to the of velocity 

in homogeneous medium with unit conductivity. 

In figures 4-5 the flow is directed along Z-axis, 

coefficient 2η  is large. The mean value of 

filtration velocity obtained by our approach 

agrees better with the results of numerical 

modeling than the mean value of velocity 

obtained by the conventional perturbation theory. 

The mean value of filtration velocity is less than 

mean value of velocity in isotropic medium. If the 

scale of the fluctuations in the Y-axis is bigger 

then scales in X, Z- axes, 1 2a α>  (figure 5) the 

value of the filtration velocity is close to the mean 

value of velocity in isotropic medium (line 1).  

 

5 Conclusions 
 

We have obtained the formulas taking into account 

the contribution of small-scale components to the 

calculation of mean characteristics of the filtration 

velocity in anisotropic media. The conductivity was 

simulated as an extremely heterogeneous field 

close to multifratal distribution. The later attained 

3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 2007           37



if the scale 0l  to in formula (3) tends to zero. 

Numerical verification is carried out for a medium, 

in which conductivity possesses the self-similarity 

property. The power dependences on the scale for 

the effective conductivity have been calculated. 

The effective coefficients for anisotropic case, 

distinct from coefficients for isotropic case, depend 

on the shape of correlation function Φ . However it 

was shown that such relationship is weak (see table 

1). We can replace the correlation function with 

approximation (15). It is shown that the subgrid 

modeling makes possible even with large variance 

of conductivity to obtain good results. In the 

approach used, analysis is not beyond the scope of 

the differential equations apparatus and the theory 

of random fields. The subjects of investigations are 

parameter mean values and correlation functions 

which can be measured. 

The work is supported by Russian Integration 

project No.75, SB RAS. 
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