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Abstract: This study proposes a method to estimate the posterior distribution of multidimensional 
categorical data. This methodology enables Bayesian analysis of rare events by borrowing strength from a 
large database. Once the posterior distributions are profiled, further analysis can be performed and/or 
decisions made about importance of the occurrence of a particular rare event. For example, the occurrence 
of a rare event can signal an unusual or undesirable activity in a supply chain and lead to instability in 
vendors or suppliers and other chain components, possibly leading to the failure of the entire supply 
chain. Some supply chains are critical for a stable economy and national security, thus early and efficient 
detection of disruptions of these supply chains are essential. 
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1.  Introduction 
With the advent of powerful hardware, 
interconnectivity, OLAP and of data mining 
software, many more users are capable of 
manipulating datasets in ways that were almost 
impossible before.  The availability of huge 
amounts of data and the increase in accessibility 
comes together with the promise information for 
early decision analysis in a dynamic environment. 

Microdata are files that consist of individual records 
that contain values of variables for a single person, 
a business establishment, or another individual unit.  
This study considers the joint probability 
distribution of rare events under full-file analysis 
and record-level metrics.  It is assumed that low cell 
counts and sampling zeroes correspond to 
combinations of attributes with a potential of 
several rare events that could represent some threat 
to the stability of the supply chain. 

A related area is the publishing of data aggregates 
and the risk of micro-record disclosure. An 
occurrence of a rare combination of attributes can 
lead to the identification of individual records; see 
[3] for a description of the issues. This is the 
problem of disclosure risk. It is a “complementary” 
problem to ours, in the sense that records in a 

database under high risk of disclosure are 
equivalent to low probability rare events. We will 
consider the methods developed for this problem as 
background information for our problem. Define 
the following: 

Population unique. A record within a dataset which 
is unique within the population on a given key [1] 

Sample unique. A record within a dataset which is 
unique within that dataset on a given key [1]. 

Several methods have been proposed to assess 
disclosure risks from population uniques in 
microdata files.  These methods vary from sorting 
files by all attributes in the key fields, using 
algorithms to find the frequency of small count sets, 
to data modeling. Most methods provide with an 
overall measure of disclosure risk for the whole 
data set. 

The existence of sample uniques increases the 
likelihood of re-identification of individual records; 
hence the releasing entity should focus on these 
records. If a subset of variables leads to uniqueness 
in the population; then, by matching records, an 
intruder can get access to additional information 
about the unique individual.  There is the possibility 
of inferring information about population uniques 
from sample data and from profiles with no 
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representation in the sample (sampling zeroes). 
Sample uniqueness does not imply population 
uniqueness. The existence of sample uniques, which 
are also population uniques, in data files increases 
the likelihood of disclosure. Statisticians propose a 
model to estimate the number of population uniques 
using sample data [2]. These models provide a 
general disclosure risk measure for the data set. The 
problem where, given a dataset, there may be P-sets 
of data that are unique has been addressed [3]. This 
P-set is unique in the set of N records in the 
following two cases: 1) there is but one individual 
with that profile; 2) there is a small number k of 
individuals, say k = 2 or 3, with that specific profile. 
An approach is aimed at finding rare combinations 
of any attribute in the dataset [3]. The Special 
Unique Detection Algorithm (SUDA) was 
introduced in [5], which determines the uniqueness 
of a record, within a dataset, based on the 
uniqueness of a subset of the complete attribute set. 
The complexity of these types of algorithms is 
discussed in literature [5, 17]. The algorithm in [17] 
has a complexity of O(2qN), where q is the number 
of fields and N is the number of records. 

Another way to detect unique profiles is by cross-
classifying all observations in a file using a k-
dimensional contingency table, where k is the 
number of attributes in the file. Cells with a count 
of one correspond to joint categories with one 
observation: a unique observation. Cell probabilities 
can be estimated with loglinear models, as 
suggested in [6] and [14]. It is possible to infer 
population uniqueness from sample zeros and there 
is risk of disclosure related to small cell counts 
larger than one [6]. It is proposed the use a 
Bayesian framework as a natural way to find 
population uniques via an approach called model 
averaging [6]. Small cell counts carry small 
amounts of information and it is difficult to 
conclude based on this amount of information. The 
problem of finding joint events with small 
frequencies in datasets and the need for a strong 
assumption on the distribution of the cell counts in 
the population is presented in [15]. A Poisson-
Gamma model is proposed in [2]. However, the 
Poisson-Gamma model and related models tend to 
underestimate the number of uniques in the 
population [8]. Others use the multinomial-Dirichlet 
model [9], [15]. Some researches feel fitting a 
loglinear model to contingency tables is 
computationally expensive and propose to fit a 
Lancaster-type additive model of interaction terms 
for cell probabilities of contingency tables [15]. A 

disadvantage of the additive probability model is 
that it assumes no structural zeros. A full Bayesian 
approach to evaluate the number of population 
uniques, in terms of the posterior probability 
distribution of population uniqueness was proposed 
in [13]. Super population models provide an overall 
estimate of the number of population uniques in the 
sample but they do not suggest which records have 
higher identification risk than others. 

2. Methodology 
The point estimates for the cell counts assist in 
identifying profiles with low cell counts.  From the 
posterior distribution, cells with expected low cell 
counts can be identified. Define the following: 

Low cell count. A cell count such that (mθ ≤ δ), 
where δ is a threshold established by the user and 
mθ is the expected count for cell θ. 

Potential disclosure risk set (φ). The set constituted 
by those records with the profile corresponding to 
the joint attributes described by low cell counts and 
sampling zeroes. 

It is assumed that combinations of attributes with a 
potential of several rare events that could represent 
some threat to the stability of the supply chain 
correspond low cell counts and sampling zeroes 
correspond. 

To model the data, the first step is to categorize the 
observations by all attributes, treating the dataset as 
a multi-way contingency table and fitting a 
complete, hierarchical log-linear model to the 
contingency table. A discrete data model is fitted 
using the Bayesian iterative proportional fitting 
(BIPF) [7] to obtain the joint posterior distribution 
of all cell counts. This approach allows the 
researchers to sample the posterior distributions of 
the elementary cells of the multidimensional 
contingency table to explore the following: 1) the 
posterior mean, median and mode of the 
distribution for each elementary cell count; 2) the 
posterior variation of the distribution for each 
elementary cell count; and 3) the posterior 
distribution of the minimum values for each 
elementary cell count. 

A prior Dirichlet distribution for the prior is 
assumed. Sampling zeros are treated as suggested in 
literature that deals with sparseness and model 
selection [12]. The methods are: 1) adding a very 
small constant to each cell (i.e., 10-8); 2) adding one 
count to each cell (the Lidstone correction [11); or 
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3) adding the minimax amount, N1/2/K, to each cell 
where N is the total count (the Trybula correction 
[16]). 

A standard rectangular microdata file is used. The 
population (N = 2,000,000) for this experiment is 
known and distributed Dirichlet. The samples sizes 
used are 1,000 and 10,000 for sampling ratios of 
0.0005 and 0.005 respectively; which are smaller 
sampling ratios than what is mentioned in literature 
[20]. Ideally, there is a value δ such that min(Np) ≤ 
δ indicates a risk of disclosure; where Np is the 
estimated cell count and p is the posterior point 
estimate for the proportion of observations in the 
population that corresponds to profile θ. Arbitrarily, 
δ = 50. A four-step experiment was performed: 1) 
simulate a population that has a Dirichlet 
distribution; 2) sample from the population; 3) fit a 
complete log-linear model using BIPF (the burn-in 
time is 500 iterations and 10,000 iterations post-
convergence.); 4) described the posterior 
distribution of min(Np); 5) assess the effect of 
flattening constants based on the coefficient of 
skewness. 

The selection of a flattening constant has a 
repercussion in the resulting posterior distribution.  
Two methods to treat sampling zeros will be used: 
Lindstone and Trybula. Types of cells, those for 
profiles with small probability of occurrence and 
those for profiles with very small probability of 
occurrence (which could represent a rare event), 
were selected to observe the effect of the flattening 
constants on the posterior distribution of cell 
counts. 

Let ε be the set of elementary cells corresponding 
sampling ones but relatively large number of 
observations in the population; thus representing a 
rare event.  Let φ be the set of elementary cells 
corresponding to sampling ones and a relatively 
small number of observations in the population; 
thus representing rare events. It is of interest to 
compare the posterior distribution of minε(Np) 
versus the posterior distribution of minφ(Nπ), where 
π are the proportion estimates obtained from the 
sample data, and X ~ Dirichlet(β) are the 
observations for the underlying population.. 

The objective is to use the posterior distribution of 
min(Np) to detect rare events. This decision is 
presented as a hypothesis test. Defining fθ as the 
sample frequency for cell θ, the objective is to test 
the following hypothesis: 

H0 : fθ ≥ δ (no threat concern for profile θ) 

H1 : fθ < δ (threat concern for profile θ) 

Where δ is a threshold which represents the largest 
cell count that is considered a threat. Rejecting the 
null hypothesis would imply that it that cell with 
profileθ represents an unusual activity and a 
potential threat. 

3. Results 
Selection of a Flattening Constant 

The BIPF was used to estimate the cell counts using 
two types of flattening constants: the Lindstone 
method and the Trybula method. It was found that 
the posterior distributions using the Trybula method 
tend to be more positively skewed than the 
distributions using the Lindstone method. There 
seem to be a sharp difference in skewness between 
those distributions corresponding to profiles with a 
high disclosure risk and those corresponding to 
profiles with lower disclosure risk. Error! 
Reference source not found. show the coefficients 
of skewness for the posterior distributions estimated 
using the Lindstone flattening constant and those 
obtained using the Trybula flattening constant. The 
first seven rows correspond to high-risk profile 
cells. The bottom five rows correspond to low-risk 
cells. 
Table 1: Coefficient of Skewness of Posterior 
Distributions under Lindstone (left) and Trybula 

Cell Skewness Cell Skewness 
82 0.9825 82 5.0083 
79 1.8668 79 5.5941 
160 1.4519 160 6.5518 
185 1.5441 185 14.0766 
197 0.9064 197 4.6204 
300 1.8824 300 6.8075 
297 1.6456 297 4.1609 

(right) 

In this example, the Trybula flattening constant (on 
the right) seems to provide the information 
necessary to discriminate between low count cells 
with medium and very small probabilities of 
occurrence.  

Discriminating Between Lower Risk and Higher 
Risk 

92 1.4073 92 1.6387 
22 1.2325 22 1.0729 
211 1.1727 211 1.4090 
354 1.2767 354 1.2328 
374 0.6747 374 1.9075 
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The Trybula method was used to generate posterior 
distributions for minε(Np) and minφ(N π̂ ). Figure 1b 
shows a pronounced positive skewness for the 
posterior distribution of those profiles representing 
low and high probability of rare events, minφ(N π̂ ) 
when compared against the posterior distribution in 
Figure 1a of profiles that represent a medium rare 
event, minε(Np). 

Figure 1a: Posterior Distributions: minε(Np) 

Figure 2b: Posterior Distributions: and minφ(N π̂ ) 

 

Sample of low count cells (including sampling 
zeros) we can say that, there is a probability of 0.05 
of seeing a population count less than 18, given a 
low probability of a rare event; while there is a 
probability of 0.05 of seeing a population count less 
than 36, given high probability of a rare event. 
Remember that low and high probabilities were 
determined arbitrarily. 

4. Conclusion 
A method to discover profiles of rare events is 
being explored. This method uses sample data 
(including sample zeros by means of a flattening 
constant), and a Bayesian method, to incorporate a 
prior distribution for the population into the 
estimation of the distribution of counts of the 

population. The method that we explore is intended 
to identify profiles that are not very frequent in the 
population using only the information that is 
gathered through a simple random sample. The 
posterior distributions for minimum sample counts 
(or zero) with high probability of a rare event have 
been compared to the posterior distributions for 
minimum sample counts (or zero) with low 
probability of rare event. It was found that this 
proposed method has potential for identifying and 
distinguishing between rare events; specifically, it 
was found that the posterior distribution of the 
minimum counts for low-probability cells have a 
skewness that is more positive than the skewness of 
the posterior distribution of the minimum counts for 
the low-probability cells; the percentiles of the 
posterior distribution are distinct enough to 
distinguish between different profiles of rare events. 
The objective of a future study will be to develop a 
single risk measure or hypothesis test to distinguish 
a high-probability profile from a low-probability 
profile by means of a metric over probability 
distribution; this will facilitate risk and threat 
assessment in automated systems. 
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