
Fault Tolerant Systems Design in VLSI Using Data Compression Under
Constraints of Failure Probabilities – Overview and Status

SUNIL R. DAS

School of Information Technology and Engineering, Faculty of Engineering

University of Ottawa, Ottawa, Ontario K1N 6N5, CANADA
Department of Computer and Information Science, College of Arts and Sciences

Troy University, Montgomery, AL 36103, USA

Abstract: – The design of space-efficient support hardware for built-in self-testing (BIST) is of immense significance in the
synthesis of present day very large-scale integration (VLSI) circuits and systems, particularly in the context of design paradigm
shift from system-on-board to system-on-chip (SOC). This paper presents an overview of the general problem of designing zero-
aliasing or aliasing-free space compression hardware in relation to embedded cores-based SOC for single stuck-line faults in
particular, extending the well-known concepts of conventional switching theory, and of incompatibility relation to generate
maximal compatibility classes (MCCs) utilizing graph theory concepts, based on optimal generalized sequence mergeability, as
developed by the authors in earlier works. The paper briefly presents the mathematical basis of selection criteria for merger of an
optimal number of outputs of the module under test (MUT) for realizing maximum compaction ratio in the design, along with
extensive simulation results on ISCAS 85 combinational and ISCAS 89 full-scan sequential benchmark circuits, with simulation
programs ATALANTA, FSIM, and COMPACTEST.

Key Words: – Aliasing-free space compactor, cores-based system-on-chip (SOC), maximal compatibility classes (MCCs),
maximal minimally strongly connected (MMSC) subgraphs, undirected graphs and their cliques.

1 Introduction

VERY large-scale integration (VLSI) has added
tremendous complexity to the test generation process of
integrated circuits (ICs). With the unabated growth of the
electronics industry, the integration densities and system
complexities continue to increase, and thus the need for
better and more efficient methods of testing of to guarantee
reliable operations of chips, the mainstay of today’s many
sophisticated devices and products, is being constantly felt
[1–18]. The very concept of testing has a relatively broad
applicability, and finding the most effective testing
techniques that can guarantee correct system performance is
of immense practical significance. Generally, the price of
testing integrated circuits (ICs) is rather prohibitive,
accounting for 35% to 55% of their total manufacturing
cost. Besides, testing a chip is also time-consuming, taking
up to about one-half of the total design cycle time. The
amount of time available for manufacturing, testing, and
marketing a product, on the other hand, is on the decline.
Moreover, as a result of diminishing trade barriers and
global competition, customers now demand products of
better quality at lower cost. In order to achieve this higher
quality at lower cost, evidently the testing methods have to
be improved. The conventional testing techniques of digital
circuits require application of test patterns generated by a
test pattern generator (TPG) to the module under test (MUT)
and comparing the responses with known correct responses.
For large circuits, because of higher storage requirements
for the fault-free responses, the usual test procedures are
sought to minimize the amount of needed storage [16].

 Built-in self-testing (BIST) is a design process that
provides the capability of solving many of the problems
otherwise encountered in testing digital systems. It
combines the concepts of both built-in test (BIT) and self-
test (ST) in one termed built-in self-test (BIST). In BIST,
test generation, test application, and response verification
are all accomplished through built-in hardware, which
allows different parts of a chip to be tested in parallel,
reducing thereby the required testing time, besides
eliminating the necessity for external test equipment. As the
cost of testing is becoming the single major component of
the manufacturing expense of a new product, BIST thus
tends to reduce manufacturing and maintenance costs
through improved diagnosis. Several companies such as
Motorola, AT&T, IBM, and Intel have incorporated BIST in
many of their products [3, 4, 6–8]. AT&T, for example, has
incorporated BIST into more than 200 of their IC chips. The
three large programmable logic arrays (PLAs) and
microcode ROM in the Intel 80386 microprocessor were
built-in self-tested [16–18]. The general-purpose
microprocessor chip, Alpha AXP21164, and Motorola
microprocessor 68020, were also tested using BIST
techniques [4]. More recently, Intel, for its Pentium Pro
architecture microprocessor, with its unique requirements of
meeting very high production goals, superior performance
standards, and impeccable test quality put strong emphasis
on its design-for-test (DFT) direction [8]. A set of
constraints, however, limits Intel’s ability to tenaciously
explore DFT and test generation techniques, viz. full-scan or
partial-scan or scan-based BIST [2]. AMD’s K6 processor is
a reduced instruction set computer (RISC) core named
enhanced RISC86 microarchitecture [7]. K6 processor

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 329

incorporates BIST into its DFT process. Each RAM array of
K6 processor has its own BIST controller. BIST executes
simultaneously on all of the arrays for a predefined number
of clock cycles that ensures completion for the largest array.
Hence, BIST execution time depends on the size of the
largest array [2]. AMD uses commercial automatic test
pattern generation (ATPG) tool to create scan test patterns
for stuck-faults in their processor. The DFT framework for
500-MHz IBM S/390 microprocessor utilizes a wide range
of tests and techniques to guarantee superb reliability of
components within a system [2]. Register arrays are tested
through the scan chain, while nonregister memories are
tested with programmable RAM BIST. Hewlett-Packard’s
PA8500 is a 0.25-μm superscalar processor that achieves
fast but thorough test with its cache test hardware’s ability
to perform March tests, which is an effective way to detect
several kinds of functional faults [6]. Digital’s Alpha 21164
processor combines both structured and ad hoc DFT
solutions, for which a combination of hardware and
software BIST was adopted [2]. Sun Microsystems’
UltraSparc processor incorporates several DFT constructs as
well. The achievement of its quality performance coupled
with reduced chip area conflicts with a design requirement
that is easy to debug, test, and manufacture [2].
 BIST is widely used to test embedded regular structures
that exhibit a high degree of periodicity such as memory
arrays (SRAMs, ROMs, FIFOs, and registers). A typical
BIST environment uses a TPG that sends its outputs to an
MUT, and output streams from the MUT are fed into a test
data analyzer. A fault is detected if the test sequence is
different from the response of the fault-free circuit. The test
data analyzer is comprised of a response compaction unit
(RCU), storage for the fault-free responses of the MUT, and
a comparator. In order to reduce the amount of data
represented by the fault-free and faulty MUT responses,
data compression is used to create signatures (short binary
sequences) from the MUT and its corresponding fault-free
circuit. Signatures are compared and faults are detected if a
match does not occur. BIST techniques may be used during
normal functional operating conditions of the unit under test
(on-line testing), as well as when a system is not carrying
out its normal functions (off-line testing). In the case where
detecting real-time errors is not that important, systems,
boards, and chips can be tested in off-line BIST mode. BIST
techniques use pseudoexhaustive or pseudorandom test
patterns, or sometimes on-chip storing of reduced or
compact test sets. Today, testing logic circuits exhaustively
is seldom used, since only a few test vectors are needed to
ensure full fault coverage for single stuck-line faults [16–
18]. Reduced pattern test sets can be generated using
existing algorithms such as FAN, and others [1, 2]. Built-in
test generators can often generate such reduced test sets at
low cost, making BIST techniques suitable for on-chip self-
testing.

 The subject paper focuses primarily on the response
compaction process of BIST techniques that basically
formulate into realizing appropriate means of reducing the

test data volume coming from the MUT to a signature. The
response compaction in BIST is carried out through a space
compaction unit followed by time compaction. In general, P
input sequences coming from an MUT are fed into a space
compactor, providing L output streams of bits such that L
<< P; most often, test responses are compressed into only
one sequence (L = 1). Space compaction brings a solution to
the problem of achieving high-quality BIST of complex
chips without the necessity of monitoring a large number of
internal test points, reducing thereby testing time and area
overhead by merging test sequences coming from these
internal test points into a single stream of bits [11–13]. This
single bit stream of length H is ultimately fed into a time
compactor, and a shorter sequence of length B (B < H) is
obtained at the output [9, 10]. The extra logic representing
the compaction network, however, must be as simple as
possible, to be easily embedded within the MUT, and
should not introduce signal delays to affect either the test
execution time or normal functionality of the module being
tested. Moreover, the length of the signature must be as
short as possible in order to minimize the amount of
memory needed to store the fault-free response signatures.
Also, signatures derived from faulty output responses and
their corresponding fault-free signatures should not be the
same, which unfortunately is not always the case. A
fundamental problem with compaction techniques is error
masking or aliasing [16–18] which occurs when the
signatures from faulty output responses map into the fault-
free signatures, usually calculated by identifying a good
circuit, applying test patterns to it, and then having the
compaction unit generate the fault-free references.

 A major challenge in realizing efficient space compaction
in BIST is the development of techniques that are simple,
suitable for on-chip self-testing, require low area overhead,
and have little adverse impact on the MUT performance.
With this perspective in focus, this paper revisits the general
problem of designing zero-aliasing BIST support hardware
with applications targeted towards embedded cores-based
system-on-chip (SOC) [15, 18], extending the well-known
concepts of conventional switching theory, particularly
those of cover table and frequency ordering commonly
utilized in the simplification of switching functions, and of
incompatibility relation as employed in the minimization of
incomplete sequential machines, using graph theoretic
concepts in the design [22–25], based on optimal
generalized sequence mergeability as developed and applied
by the authors in earlier works [14], for detectable single
stuck-line faults of the MUT. This paper makes use of
mathematically sound selection criteria of merger of an
optimal number of output lines of the MUT to decide on the
logic for zero-aliasing, achieving maximal compaction ratio
in the process, as is evident from extensive simulation
experiments conducted on ISCAS 85 combinational and
ISCAS 89 full-scan sequential benchmark circuits.

2 Implementation of zero-aliasing space compression –
mathematical basis

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 330

The mathematical basis [15] underlying the realization of
proposed zero-aliasing space compaction is outlined in the
following for the sake of clear understanding and
completeness.
Property 1 Let A and B represent two of the outputs of an
MUT. Let these MUT outputs be merged by a gate from the
logic family AND/NAND, OR/NOR, and XOR/XNOR, and
let the gate output be z1. Then, we might envisage the under
noted possible scenarios:

 Case 1 Fault-free (FF) outputs = Faulty (F) outputs
(outputs subject to the condition of MUT having faults), viz.
FF = F ⇒ Outputs A and B of the MUT do not detect any
faults, and faults are hence not detectable at z1.

 Case 2 Only the faults that occur at A and B (subject
to the condition of MUT having faults) are detectable at z1
⇒ FF ≠ F.

 Case 3 Faults occur at A and B but either all or some
are not detectable at z1 ⇒ FF ≠ F. In this case, the faults
missed at z1 are detected additionally at other outputs of the
MUT (besides A and B).
Definition 1 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT
outputs A, B, C, … be θ where θ ≤ β, the total number of
detectable faults at the MUT outputs when subjected to a
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be
a minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
two outputs A, B conforms to conditions of Cases 1-2 above
(but not Case 3). If the MUT outputs A, B are now merged
by an AND(NAND) gate, we define output lines A, B to be
strongly AND(NAND) compatible, written as

 (AB) s-AND(NAND) compatible.
Definition 2 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT
outputs A, B, C, … be θ where θ ≤ β, the total number of
detectable faults at the MUT outputs when subjected to a
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be
a minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
two outputs A, B conforms to conditions of Case 3 (but not
Cases 1-2). If the MUT outputs A, B are now merged by an
AND(NAND) gate, we define output lines A, B to be
weakly AND(NAND) compatible, written as

 (AB) w-AND(NAND) compatible.
Definition 3 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT
outputs A, B, C, … be θ where θ ≤ β, the total number of
detectable faults at the MUT outputs when subjected to a
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be
a minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
two outputs A, B conforms to none of the conditions as
specified by Cases 1-3. If the MUT outputs A, B are now
merged by an AND(NAND) gate, we define output lines A,
B to be AND(NAND) incompatible, written as

 (AB) AND(NAND) incompatible.
 We can similarly define two lines (AB) being s-
OR(NOR) compatible, w-OR(NOR) compatible, OR(NOR)

incompatible, s-XOR(XNOR) compatible, w-XOR(XNOR)
compatible, and XOR(XNOR) incompatible.
Definition 4 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT
outputs A, B, C, … be θ where θ ≤ β, the total number of
detectable faults at the MUT output when subjected to a
compact set of deterministic tests τ, τ ≤ 2n, τ might not be a
minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
outputs A, B conforms to either one of the three conditions
as specified by Cases 1-3, but unknown to us. If the MUT
outputs A, B are merged under these conditions by an
AND(NAND), OR(NOR), or XOR(XNOR) gate, then we
define output lines A, B to be simply AND(NAND),
OR(NOR), or XOR(XNOR) compatible, written as
 (AB) AND(NAND), OR(NOR), or XOR(XNOR)
 compatible.
Theorem 1 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT
outputs A, B, C, … be θ where θ ≤ β, the total number of
detectable faults at the MUT outputs when subjected to a
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be
a minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
outputs A, B conforms to conditions of Cases 1-2 above, so
that the outputs A, B are s-AND(NAND) compatible.
Similarly, let the outputs B, C be s-AND(NAND)
compatible, and the outputs A, C be s-AND(NAND)
compatible. Then the outputs (ABC) are s-AND(NAND)
compatible and all faults are detectable at z1.
Theorem 2 Let A1, A2, … , Am be the different outputs of an
n-input m-output MUT. Let the faults detected at the MUT
outputs A1, A2, … , Am be θ where θ ≤ β, the total number
of detectable faults at the MUT outputs when subjected to a
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be
a minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
outputs A1, A2, … , Am conforms to conditions of Cases 1-2
above, so that the outputs (A1A2…Am) are s-AND(NAND)
compatible. Then, all faults are detectable at z1.
Theorem 3 Let A, B, C, … be the different outputs of an n-
input m-output MUT. Let the faults detected at the MUT
outputs A, B, C, … be θ where θ ≤ β, the total number of
detectable faults at the MUT outputs when subjected to a
compacted set of deterministic tests τ, τ ≤ 2n, τ might not be
a minimal or nonminimal but complete set of tests, or to
pseudorandom tests. Assume that the fault situation at the
outputs A, B conforms to conditions of Cases 1-2 above, so
that the outputs A, B are s-OR(NOR) compatible. Similarly,
let the outputs B, C be s-OR(NOR) compatible, and the
outputs A, C be s-OR (NOR) compatible. Then the outputs
(ABC) are s-OR(NOR) compatible and all faults are
detectable at z1.
Corollary 3.1 Let A1, A2, … , Am be the different outputs of
an n-input m-output MUT. Let the faults detected at the
MUT outputs A1, A2, … , Am be θ where θ ≤ β, the total
number of detectable faults at the MUT output when
subjected to a compact set of deterministic tests τ, τ ≤ 2n, τ

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 331

might not be a minimal or nonminimal but complete set of
tests, or to pseudorandom tests. Assume that the fault
situation at the outputs A1, A2, … , Am conforms to
conditions of Case 3 above, so that the outputs A1, A2, … ,
Am are w-AND(NAND) compatible. Then all faults may or
may not be detected at z1.
 Again, identical conclusions can be derived if lines
(ABC) are w-OR(NOR) compatible, w-XOR(XNOR)
compatible, or a number of lines A1, A2, … , Am are w-
OR(NOR) compatible, w-XOR(XNOR) compatible.
 In actual situations, we do not know (and also it is rather
difficult to know) whether the merged outputs conform to
conditions specified by Cases 1-3 as discussed, and as such
we have to deal exclusively with the case of simply
compatible. However, very recently, a novel approach to the
solution of the problem utilizing the concept of fault grading
[26] has been proposed, which renders the developed
mathematical basis underlying the notion of strong and
weak compatibilities really meaningful. But since this paper
does not address the theory underlying that approach, it
becomes necessary to check here every possible MUT
output pair in a group for being simply compatible
(AND/NAND, OR/NOR, or XOR/XNOR) to form a larger
maximal or nonmaximal compatibility class.

3 Graph theoretic concepts and implementation of
design approach

An important problem in relation to designing zero-aliasing
space compression networks as proposed herein is to first
find the sets of maximal compatibility classes (MCCs) of
response data outputs of the MUT for logic families
AND/NAND, OR/NOR, and XOR/XNOR, given the
information of the corresponding pairs of incompatibles. In
this paper, use has been made of available graph theoretic
approaches in the solution of the problem. Some relevant
basic concepts of graph theory as used in the paper in this
regard might be relevant here for the sake of completeness
[22, 24, 25].

A Approach based on generation of maximal complete
subgraphs or cliques of undirected graphs using Bron-
Kerbosch alogorithm

Some important basic definitions are given as follows.
Definition 5 An undirected graph A = (V, E). is defined as
an ordered pair consisting of a finite set V of nodes or
vertices, and a set of unordered pairs (v, w) of distinct
vertices called edges. Any two vertices v, w in A are said to
be adjacent to each other if (v, w) ∈ E. A set S of vertices of
A is a complete subgraph if (v, w) ∈ E for all pairs of
distinct vertices v, w ∈ S. A maximal complete subgraph or
clique of an undirected graph A is a complete subgraph that
is not contained in any other complete subgraph of A. The
complement of an undirected graph A = (V, E) is the graph
Ā = (V, Ē), where Ē = {(v, w)⏐v, w ∈ G, v ≠ w, and (v, w)
∉ E}.

 It is important to observe here that this clique detection
problem of graph theory is identical to the problem of
deriving the collection of maximal compatibility classes
(MCCs) in a set of elements with compatibility relation. The
maximal compatible problem as a counterpart of the clique
problem has again been investigated by many authors in
various disciplines. It is appropriate to remark here that the
clique generation problem like some of the classical
problems of combinatorics is an NP-complete problem [16],
and as such is quite intractable.
 Bron et al. [22] developed two backtracking algorithms
for generating all cliques, using a branch-and-bound
technique that cuts off branches that cannot lead to a clique.
These algorithms were subsequently reported by Bron and
Kerbosch and commonly known as Bron-Kerbosch
algorithm in the literature [24]. Their first version is a
straightforward implementation of the basic algorithm and
generates cliques in a lexicographic order. The second
version is derived from the first and generates cliques in an
unpredictable order in an attempt to minimize the number of
branches to be traversed. The authors implemented their
algorithms with others. For the Moon-Moser graphs, the
authors’ second test case, the processing time for the first
version was found proportional to 4k, whereas for the
second version of the algorithms, it was proportional to
3.14k, for some constant k characteristic of the graphs. The
algorithms need at most ½(M+3) storage locations to
contain arrays of small integers, where M is the size of the
largest connected component in the input graph. In our
proposed approach for zero-aliasing space compaction, use
has been made specifically of this well known Bron-
Kerbosch algorithm for the generation of maximal
compatibles (cliques) of response data outputs for logic
families AND/NAND, OR/NOR, and XOR/XNOR, based
on information of their pairs of incompatibles.

B Approach based on generation of maximal minimally
strongly connected (MMSC) subgraphs – concepts

Definition 6 Consider an undirected graph A with n vertices,
vi, i = 1, 2, … , n. Two subgraphs Aa and Ab of A are said to
be complementary to each other, if and only if, both Aa and
Ab have the same set of vertices and one has edges
connecting between those pairs of vertices that are not
connected by edges in the other.
Definition 7 Consider a vertex vi in an undirected graph A.
The degree of vi, d(vi), is the number of edges of A incident
in vi. The degree complement of a vertex vi, d′(vi), is the
degree of the vertex vi in the complementary graph Ā. Two
vertices vi and vj in A are said to be minimally strongly
connected, if and only if, vi is reachable from vj by a path of
length 1. Otherwise, the vertices, if connected, are said to be
nonminimally strongly connected. The degree complement
of a nonminimally strongly connected pair of vertices (vi, vj)
in A is written as d′(vi, vj) = (k1, k2), where d′(vi) = k1, d′(vj)
= k2.
Definition 8 A subgraph As of A is said to be minimally
strongly connected (MSC), if and only if, every possible
pair of vertices in As is minimally strongly connected. The

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 332

subgraph As is said to be maximal minimally strongly
connected (MMSC) if there does not exit any vertex outside
of As which is minimally strongly connected with all the
vertices of As.
Definition 9 Let (vi, vj) be a nonminimally strongly
connected pair of vertices in A. Then splitting A into two
subgraphs Ai and Aj such that Ai contains the vertex vi and
Aj contains the vertex vj is to obtain two subgraphs Ai and
Aj from A such that Ai contains all the vertices of A except
vj and Aj contains all the vertices of A except vi, both Ai and
Aj having all the existing edges of A connecting between
relevant pairs of vertices. Obviously, Ai ⊆ A; Aj ⊆ A.
Definition 10 For any two distinct nonminimally strongly
connected pairs of vertices (vi1, vj1) and (vi2, vj2) in A, let
d′(vi1, vj1) = (k1, k2) and d′(vi2, vj2) = (r1, r2). If k1 + k2 > r1 +
r2, then an ordering of the degree complements of the pairs
of vertices can be made as d′(vi1, vj1) ≥ d′(vi2, vj2), whereas,
if k1 + k2 < r1 + r2, the ordering of the degree complements
of the pairs of vertices can be made as d′(vi2, vj2) ≥ d′(vi1,
vj1). If, however, k1 + k2 = r1 + r2, the ordering can be made
either as d′(vi1, vj1) ≥ d′(vi2, vj2), or as d′(vi2, vj2) ≥ d′(vi1, vj1).
This kind of ordering (≥) that can be established among
degree complements of different nonminimally strongly
connected pairs of vertices in an undirected graph is called
the magnitude ordering of the degree complements of the
pairs of vertices.
Theorem 4 Let A be an undirected graph, and let (vi, vj) be a
nonminimally strongly connected pair of vertices in A. Let
the graph A be split around (vi, vj) into two subgraphs Ai
and Aj and let this process of splitting around nonminimally
strongly connected pairs of vertices be iteratively applied to
Ai and Aj and to all their subgraphs until in the resulting
subgraphs there exist no more nonminimally strongly
connected pairs of vertices. The final set of these subgraphs
then includes all the MMSC subgraphs of A.
Theorem 5 Let A be an undirected graph, and let (vi, vj) be a
nonminimally strongly connected pair of vertices of A
having the highest degree complement in the magnitude
ordering. If now the graph A is split around (vi, vj) into two
subgraphs Ai and Aj, then in the resulting subgraphs the
number of nonminimally strongly connected pairs of
vertices will always be less than that when A will be split
into subgraphs around any other nonminimally strongly
connected pair having non-highest degree complement in
the magnitude ordering.
Theorem 6 In the process of successively splitting an
undirected graph A into subgraphs around nonminimally
strongly connected pairs of vertices, let Ai and Aj be any
two subgraphs obtained at different stages such that Ai ⊆ Aj,
but Ai is not derived from Aj. Then, in finding only MMSC

subgraphs, the subgraph Ai may be discarded in general.

4 Algorithms development

The developed zero-aliasing space compression approach
consists of a set of algorithms: The first algorithm is for
computing set of incompatible pairs [15] of response data

outputs of the MUT for logic AND/NAND, OR/NOR/, and
XOR/XNOR, while the second and third algorithms are for
finding their maximal compatibility classes (MCCs) from
the incompatible pairs based on the two different graph
theoretic approaches as discussed. The final algorithm
constructs the space compaction networks using the
information of the generated maximal compatibility classes.
All the different algorithms are presented below.

A Algorithm 1

This algorithm computes all incompatible pairs of the MUT
output lines (pairs that do not produce 100% fault coverage)
for logic AND/NAND, OR/NOR, and XOR/XNOR.
Step 1) Get the total number of output lines of the MUT.
Step 2) Generate all possible combinations (vi, vj) of the
MUT output lines, taking two at a time, and store all pairs of
the output lines (vi, vj).
Step 3) Select the first pair from the list of all combined
output lines (vi, vj).
Step 4) Merge the selected pair of output lines (vi, vj) using
logic gates AND/NAND, OR/NOR, and XOR/XNOR,
respectively, using only one type of logic gate at a time.
Step 5) Add a new output line to the original MUT
corresponding to the outputs (vi, vj), one at a time.
Step 6) Discard the output lines (vi, vj) from the original
MUT, and generate a new modified MUT.
Step 7) Inject stuck-at logic faults into the newly generated
MUT and apply test patterns.
Step 8) If the fault coverage is less than 100%, then store the
output pair (vi, vj) in the incompatible pairs database of
logic AND/NAND, OR/NOR, and XOR/XNOR,
respectively.
Step 9) Delete the pair just considered, from the list of all
combined output lines (vi, vj), and select the next pair.
Step 10) Go to step 4 and continue until all pairs are
exhausted.

B Algorithm 2

This algorithm is an implementation of the well-known
graph theory technique of Bron and Kerbosch for computing
all cliques in an undirected graph [22, 24]. We employ this
as one graph theoretic approach for computing the MCCs of
response data outputs of the MUT for logic families
AND/NAND, OR/NOR, and XOR/XNOR. In the process,
we use information of the incompatible pairs of the MUT
output lines as generated by applying Algorithm 1 as given
above. The algorithm is now described as follows.
Step 1) Calculate the total number of vertices in the
undirected graph.
Step 2) Find the connected diagonal elements of the graph.
Step 3) Select a candidate point.
Step 4) Merge the selected candidate to a set called
compsub, which is to be extended by a new point, or shrunk
by a point on traveling along a branch of the backtracking
tree.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 333

Step 5) Generate a new set called candidates, which is the
set of all points that will in due time serve as an extension to
the present configuration of compsub.
Step 6) Create another set called not, which is the set of all
points that, at an earlier stage, already served as an
extension of the present configuration of compsub, and are
now explicitly excluded.
Step 7) Remove all points not connected to the selected
candidate, keeping the old sets intact.
Step 8) Call the extension operator to perform on the newly
generated sets.
Step 9) Remove the selected candidate from the compsub,
and add it to the old set not after returning.

C Algorithm 3

This algorithm also finds the MCCs from the same set of
incompatible pairs of the MUT outputs as obtained by
Algorithm 1 above, based on the implementation of the
other graph theoretic approach as outlined previously [25].
The algorithm is provided below.
Step 1) From the undirected graph A (compatibility graph)
representative of the incompatible pairs, find the magnitude
ordering of degree complements of the nonminimally
strongly connected (NMSC) pair of outputs of the MUT in
A.
Step 2) Select an NMSC pair of outputs (vi, vj) in A, where
(vi, vj) has the highest degree complement in the magnitude
ordering. If more than one pair of outputs has the highest
degree complement, select any one of these output pairs (vi,
vj). Split A around (vi, vj) into two subgraphs Ai and Aj such
that Ai contains all the outputs (vertices) of A except vj and
Aj contains all the outputs (vertices) of A except vi.
a) Consider the subgraph Ai; check if there exists a
subgraph Ak from which Aj is not derived, contains Ai. If so,
discard the subgraph Aj; if not, take Ai and go to step 1.
b) Consider the subgraph Aj; check if there exists a
subgraph Am from which Aj is not derived, contains Aj. If
so, discard the subgraph Aj; if not, take Aj and go to step 1.
Step 3) Follow steps 1 and 2 iteratively until in all the
resulting subgraphs there does not exist any NMSC pair of
outputs. The final set of subgraphs then includes all the
MMSC subgraphs (MCCs) of A.
Step 4).In the set of subgraphs obtained after step 3, check if
any subgraph is contained in another subgraph for possible
cancellation of non-MMSC subgraphs. The resultant set,
after cancellation, if any, gives all the MMSC subgraphs
(MCCs) of A.

D Algorithm 4

This algorithm utilizes the knowledge of MCCs as obtained
from either Algorithm 2 or Algorithm 3 to construct zero-
aliasing space compactors for the MUT. The final algorithm
is now given as follows.
Step 1) Define the possible maximum number of stages in
the space compaction trees at the MUT output.

Step 2) Get the total number of output lines in the MUT.
Continue the following steps until there is only a single
output line (possibly).
Step 3) Find the sets of all MCCs from the MUT for logic
AND/NAND, OR/NOR, and XOR/XNOR, employing
Algorithm 2 or Algorithm 3.
Step 4) Select an MCCi with large (possibly largest) number
of output lines from the set of MCCs. Select the next large
class during subsequent iteration, if 100% fault coverage is
not achieved in the previous iteration from the same MUT.
Step 5) Merge selected output lines of the MCCi using
appropriate logic gates (AND/NAND, OR/NOR, or
XOR/XNOR).
Step 6) Add a new output line corresponding to the selected
merged outputs of MCCi.
Step 7) Discard those MUT output lines that are already
used in MCCi.
Step 8) Search another MCCj from the remaining output
lines.
Step 9) Merge the selected output lines in MCCj using
appropriate logic gates.
Step 10) Add a new output line corresponding to the
selected merged outputs of MCCj.
Step 11) Discard the output lines that are already used in
MCCj.
Step 12) Go to step 8 as long as there are MCCs in the sets,
and enough output lines.
Step 13) Find all the remaining output lines that do not
belong to any of the selected MCCs.
Step 14) Merge all these remaining lines with XOR/XNOR
gate.
Step 15) Add a new output line corresponding to these
selected merged outputs.
Step 16) Inject stuck-at logic faults into the newly generated
MUT (original MUT with COMPACTOR hardware).
Step 17) Compute fault coverage (FC) by applying input
test patterns.
Step 18) If FC = 100%, then replace the old MUT with the
new MUT and go to Step 2 for generating the next stage of
the compactor.
Step 19) If FC < 100%, then merge all the remaining output
lines with two-input XOR/XNOR gates, two output lines at
a time.
Step 20) Add new output lines corresponding to the selected
merged outputs.
Step 21) Inject stuck-at logic faults into the newly generated
MUT (original MUT with COMPACTOR hardware).
Step 22) Compute FC by applying input test patterns.
Step 23) If FC < 100%, then continue to work on the same
MUT. Go to step 4 for selecting a new MCCk.
Step 24) If FC = 100%, then replace the old MUT with the
new MUT, and go to step 2 for computing the next and
subsequent stages of the compactor.

5 Experimental results

Extensive simulations runs were conducted to demonstrate
the feasibility of the proposed zero-aliasing space
compaction scheme using ISCAS 85 combinational

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 334

benchmark circuits and ISCAS 89 full-scan sequential
benchmark circuits. In our design experimentation, we used
ATALANTA [19] (fault simulation program developed at
the Virginia Polytechnic Institute and State University) as
test generation tool to produce the fault-free output
sequences needed to construct our space compactor circuits
and to test the benchmark circuits using reduced test sets.
We also used FSIM fault simulation program [20] that
generates pseudorandom test sets, and COMPACTEST [21]
program to generate the reduced test sets that detect most
detectable single stuck-line faults for all the benchmark
circuits. For each circuit, we determined the fault coverage
without the compactor, fault coverage with the compactor,
number of test vectors used to construct the compaction
tree, simulation CPU time, number of test vectors applied,
hardware overhead, and compaction ratio by running
ATALANTA and FSIM programs on a SUN SPARC 5
workstation, and COMPACTEST program on IBM AIX
machine.
 The complete results on ISCAS 85 combinational and
ISCAS 89 full-scan sequential benchmark circuits are listed
in the multitude of tables that follow (Tables 1–8). The
circuits with the compressors were tested with the same
fault injection and test vectors for all the simulation
programs FSIM, COMPACTEST, and ATALANTA. The
fault coverage is considered 100%, if the faults detected at
the MUT outputs and COMPACTOR outputs are the same,
implying thereby that the COMPACTOR did not introduce any
information loss. The results on simulation using HOPE
were not provided due to space constraint.
 Fig. 1 gives estimates of the hardware overhead for
ISCAS 85 combinational benchmark circuits using
ATALANTA simulation program. For estimating the
hardware overhead, we used the ratio of the weighted gate
count metric, viz. average fanins multiplied by the number
of gates or gate count of the COMPACTOR and that of the
total circuit comprised of the MUT and COMPACTOR. Fig. 2,
on the other hand, gives compaction ratio for ISCAS 89
full-scan sequential benchmark circuits using ATALANTA.

6 Conclusions

This paper visits zero-aliasing space compaction problem of
response data outputs of MUT with application specifically
targeted towards digital embedded cores-based SOCs. The
technique utilizes conventional switching theory concepts,
viz. those of cover table, frequency ordering, and
compatibility relation together with those of strong and
weak compatibilities of response data outputs, in the
selection of specific gates for merger of an arbitrary but
optimal number of output bit streams from the MUT. The
techniques, illustrated with details of design of space
compactors for ISCAS 85 combinational and ISCAS 89
full-scan sequential benchmark circuits with ATALANTA,
FSIM, and COMPACTEST simulation programs, confirm
the usefulness of the suggested approach, its simplicity,
resulting low area overhead, and full fault coverage for
single stuck-line faults, making it suitable in a VLSI design
environment as BIST support hardware. In the sequel, it is

evident from the experimental results that the suggested
approach, though relies on restricted use of heuristics, still
could be considered simple and robust enough in its design
methodology for single stuck-line faults of the MUT. With
advances in computational resources, evidently this heuristic
space compaction algorithm might be improved upon for
better efficiency in respect of time and storage.

References:

[1] Rajsuman, R.: ‘System-on-a-chip: design and test’
(Artech House, Boston, MA, 2000).
[2] Mourad, S., and Zorian, Y.: ‘Principles of testing
electronic systems’ (Wiley, New York, 2000).
[3] Kuban, J. R., and Bruce, W. C.: ‘Self-testing the
Motorola MC6804P2’, IEEE Des. Test Comput., Vol. 1,
1984, pp. 33-41.
[4] Daniels, R. G., and Bruce, W. B.: ‘Built-in self-test
trends in Motorola microprocessors’, IEEE Des. Test
Comput., Vol. 2, 1985, pp. 64-71.
[5] Das, S. R.: ‘Built-in self-testing of VLSI circuits’, IEEE
Potentials, Vol. 10, 1991, pp. 23-26.
[6] Brauch, J., and Fleischman, J.: ‘Design of cache test
hardware on the HP PA8500’, IEEE Des. Test Comput.,
Vol. 15, 1998, pp. 58-63.
[7] Fetherston, R. S., Shaik, I. P., and Ma, S. C.: ‘Testability
features of the AMD-K6 microprocessor’, IEEE Des. Test
Comput., Vol. 15, 1998, pp. 64-69.
[8] Carbine, A.: ‘Pentium pro processor design for test and
debug’, IEEE Des. Test Comput., Vol. 15, 1998, pp. 77-82.
[9] Frohwerk, R. A.: ‘Signature analysis – a new digital
field service method’, Hewlett-Packard J., Vol. 28, 1977,
pp. 2-8.
[10] Jone, W. -B., and Das, S. R.: ‘Multiple-output parity bit
signature for exhaustive testing’, J. Electron. Tes., Theory
Appl., Vol. 1, 1990, pp. 175-178.
[11] Li, Y. K., and Robinson, J. P.: ‘Space compression
method with output data modification’, IEEE Trans.
Comput.-Aided Des., Vol. 6, 1987, pp. 290-294.
[12] Jone, W. –B., and Das, S. R.: ‘Space compression
method for built-in self-testing of VLSI circuits’, Int. J.
Comput. Aided VLSI Des., Vol. 3, 1991, pp. 309-322.
[13] Pouya, B., and Touba, N. A.: ‘Synthesis of zero-
aliasing elementary-tree space compactors’. Proc. VLSI
Test Symp., 1998, pp. 70-77.
[14] Das, S. R., Barakat, T. F., Petriu, E. M., Assaf, M. H.,
and Chakrabarty, K.: ‘Space compression revisited’, IEEE
Trans. Instrum. Meas., Vol. 49, 2000, pp. 690-705.
[15] Das, S. R., Assaf, M. H., Petriu, E. M., Jone, W. –B.,
and Chakrabarty, K.: ‘A novel approach to designing
aliasing-free space compactors based on switching theory
formulation’. Proc. IEEE Instrum. Meas.Tech. Conf., 2001,
vol. 1, pp. 198-203.
[16] Das, S. R., Ramamoorthy, C. V., Assaf, M. H., Petriu,
E. M., and Jone, W. –B.: ‘Fault tolerance in systems design
in VLSI using data compression under constraints of failure
probabilities’, IEEE Trans. Instrum. Meas., Vol. 50, 2001,
pp. 1725-1747.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 335

[17] Das, S. R.: ‘Getting errors to catch themselves – self-
testing of VLSI circuits with built-in hardware’, IEEE
Trans. Instrum. Meas., Vol. 54, 2005, pp. 941-955.
[18] Das, S. R.: ‘Self-testing of cores-based embedded
systems with built-in hardware’, Proc. IEE – Circuits
Devices Syst., Vol. 152, 2005, pp. 539-546.
[19] Lee, H. K., and Ha, D. S.: ‘On the generation of test
patterns for combinational circuits’. Tech. Rep. 12-93;
Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA, 1993.
[20] Lee, H. K., and Ha, D. S.: ‘An efficient forward fault
simulation algorithm based on the parallel pattern single
fault propagation’. Proc. Int. Test Conf., 1991, pp. 946-955.
[21] Pomeranz, I., Reddy, L. N., and Reddy, S. M.:
‘COMPACTEST: a method to generate compact test sets for
combinational circuits’. Proc. Int. Test Conf., 1991, pp. 194-
203.
[22] Bron, C., Kerbosch, J., and Schell, H. J.: ‘Finding
cliques in an undirected graph’. Tech. Rep. BKS-1;
Technical University of Eindhoven, Eindhoven, The
Netherlands, 1972.
[23] Das, S. R.: ‘On a new approach for finding all the
modified cut-sets in an incompatibility graph’, IEEE Trans.
Comput., Vol. 22, 1973, pp. 187-193.
[24] Bron, C., and Kerbosch, J.: ‘Finding all cliques of an
undirected graph’, Commun. ACM, Vol. 16, 1973, pp. 575-
577.
[25] Das, S. R., Sheng, C. L., Chen, Z., and Lin, T.:
‘Magnitude ordering of degree complements of certain node
pairs in an undirected graph and an algorithm to find a class
of maximal subgraphs’, Int. J. Comput. Elec. Eng., Vol. 6,
1979, pp. 139-151.
[26] Das, S. R., Mukherjee, S., Petriu, E. M., Assaf, M. H.,
and Hossain, A.: ‘Space compaction for embedded cores-
based system-on-chips using fault graded output merger’.
Proc. IEEE Instrum. Meas. Tech. Conf., 2007, pp. 1-5.

0
2

4

6

8

10

12

14
16

c17 c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

ISCAS 85 Benchmark Circuits

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

Fig. 1 Area overhead of compaction networks for ISCAS 85
combinational benchmark circuits using ATALANTA.

0

0.05

0.1

0.15

0.2

0.25

0.3

s2
7

20
8

s2
98

s3
44

s3
49

s3
82

s7
13

s8
38

s9
53

s1
19

6
s1

23
8

ISCAS 89 Benchmark Circuits

N
o.

 o
f O

ut
pu

ts
 (M

U
T+

C
om

p)
/

N
o.

 o
f M

U
T

O
ut

pu
ts

Fig. 2 Compaction ratio for ISCAS 89 full-scan sequential benchmark

circuits using ATALANTA.

Table 1 Simulation results of ISCAS 85 combinational benchmark circuits
using ATALANTA without space compactors

Table 2 Simulation results of ISCAS 85 combinational benchmark circuits

using FSIM without space compactors

Circuit
Name

Applied
Test Vectors

No. of
Faults

Injected

No. of
Outputs

Fault
Coverage

(%)
c17 7 22 2 100.00

c432 76 520 7 100.00

c499 66 750 32 100.00

c880 107 942 26 100.00

c1355 105 1566 32 100.00

c1908 184 1870 25 100.00

c2670 182 2630 140 100.00

c3540 253 3291 22 100.00

c5315 197 5291 123 100.00

c6288 53 7710 32 100.00

c7552 376 7419 108 100.00

Circuit
Name

Applied
Test Vectors

No. of
Faults

Injected

No. of
Outputs

Fault
Coverage

(%)
c17 32 22 2 100.00

c432 544 520 7 100.00

c499 1312 750 32 100.00

c880 5480 942 26 100.00

c1355 2124 1566 32 100.00

c1908 29472 1870 25 100.00

c2670 6378144 2630 140 100.00

c3540 38848 3291 22 100.00

c5315 4576 5291 123 100.00

c6288 128 7710 32 100.00

c7552 10000000 7419 108 99.407

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 336

Table 3 Simulation results of ISCAS 85 combinational benchmark circuits
using COMPACTEST without space compactors

Table 4 Simulation results of ISCAS 85 combinational benchmark circuits

using ATALANTA with space compactors

Table 5 Simulation results of ISCAS 85 combinational benchmark circuits

using FSIM with space compactors

Table 6 Simulation results of ISCAS 85 combinational benchmark circuits
using FSIM with space compactors tested with compacted test vectors

Table 7 Simulation results of ISCAS 89 full-scan sequential benchmark
circuits using ATALANTA/FSIM with space compactors

This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada under Grant A 4750.

Circuit
Name

Applied
Test Vectors

CPU
Simulation

Time
(Secs)

No. of
Outputs

Fault
Coverage

(%)

c17 4 0.01 2 100.00

c432 44 5.09 7 99.430

c499 65 8.36 32 98.990

c880 30 1.85 26 100.00

c1355 96 2.54 32 99.480

c1908 137 13.39 25 99.230

c2670 68 96.78 140 95.520

c3540 110 278.45 22 95.920

c5315 55 35.74 123 98.890

c6288 16 68.16 32 99.330

c7552 85 164.23 108 98.440

Circuit
Name

Applied
Test Vectors

No. of
Faults

Injected

No. of
Outputs

Fault
Coverage

(%)
c17 10 22 1 100.00

c432 124 520 1 100.00

c499 169 750 1 100.00

c880 223 940 1 100.00

c1355 220 1566 1 100.00

c1908 313 1870 1 100.00

c2670 496 2630 3 100.00

c3540 270 3291 1 100.00

c5315 692 5291 1 100.00

c6288 65 7710 1 100.00

Circuit
Name

Applied
Test Vectors

No. of
Faults

Injected

No. of
Outputs

Fault
Coverage

(%)
c17 45 22 1 100.00

c432 2752 520 1 100.00

c499 10929363 750 1 100.00

c880 97055712 940 1 100.00

c1355 100000000 1566 1 94.994

c1908 96283712 1870 1 100.00

c2670 100000000 2630 3 98.869

c3540 301824 3291 1 100.00

c5315 1316134912 5291 1 100.00

c6288 224 7710 1 100.00

Circuit
Name

Applied Test
Vectors

No. of
Faults

Injected

No. of
Outputs

Fault
Coverage

(%)
c17 7 22 1 100.00

c432 80 520 1 100.00

c499 100 750 1 100.00

c880 159 940 1 100.00

c1355 124 1566 1 100.00

c1908 199 1870 1 100.00

c2670 366 2630 3 100.00

c3540 263 3291 1 100.00

c5315 686 5291 1 100.00

c6288 63 7710 1 100.00

Circuit
Name

No. of
Faults

Injected

Fault
Coverage
(without

Compactor)
(%)

No. of
Outputs

(after
Compaction)

Fault
Coverage

(with
Compactor)

(%)
s27 32 100.00 1 100.00

s208 214 100.00 1 100.00

s298 306 100.00 1 100.00

s344 340 100.00 1 100.00

s349 348 100.00 1 100.00

s382 397 100.00 1 100.00

s713 921 100.00 3 100.00

s838 187 100.00 1 100.00

s953 81 100.00 3 100.00

s1196 1025 100.00 1 100.00

s1238 1035 100.00 1 100.00

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 337

