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Abstract: - Switching operations in energy supply networks are either modeled by adding or removing artificial 
nodes which results in state dependent grid topology or by setting the switch impedance to high or low value. 
This procedure is not very accurate and can cause numerical problems.  

In this paper a more skillful method of modeling switches by systematically modifying coefficients in the 
grid admittance matrix is presented. 
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1 Introduction 
The conventional method of fault calculation is 
intended to calculate currents and voltages at the 
fault location using symmetrical components. 
Therefore elements of 1

KK
−Y  are needed which 

cannot easily be calculated due to singularity of 
KKY  in grids without neutral earthing. Additionally 

complexity increases extensively in case of 
multiple coexistent faults.  

An often used simple way of modeling shunt 
faults is adding admittance to the fault location. In 
case of unresistant short-circuits the admittance 
gets infinite and has to be replaced by a predefined 
high value in calculation programs.  

On the other hand series faults and switches are 
modeled by adding or removing additional nodes to 
the grid which results in switch state dependent and 
variably sized grid matrices and decreases 
calculation performance or by approximating an 
open switch by inserting high impedances.  

It is obvious that the conventional method is 
unsatisfactory particularly with regard to simulate 
switching operations. In this paper a new approach 
to model switches based on the fault matrix method 
is introduced. 
 
 
2 Fault Matrix Method 
The fault matrix method was developed to calculate 
any balanced or unbalanced single or coexistent 
faults on power transmission systems. It features a 
systematic and simple algorithm to be used in 
steady-state or dynamic modeling and offers an 
exact and well arranged simulation of resistant and 
unresistant series and shunt faults by only 

modifying coefficients in the terminal admittance 
matrix without changing grid topology.  

In this paper simulation of switch operations are 
focused which are modeled as series faults. 
Calculation result is the modified admittance 
matrix. Fault currents and voltages are not of 
interest now and can later be calculated i.e. during 
power flow simulation.  
 
 
3 Three-phase equipment and grid 

model 
All transformers and lines can be modeled as three-
phase quadrupoles as seen in Fig. 1. Its terminals A 
and B are logically and physically connected to 
grid nodes.  

The logical connection is manifested in the 
nodal-terminal-incidence-matrix KTK  which 
defines grid topology by attaching terminals to 
nodes. KTK  is not subject to change during 
switching operations.  
 

 
Fig. 1: three-phase quadrupole 
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The physical behavior of the equipment including 
the influence of its switches is defined by its 
admittance-matrix EQY . 

 
AA ABA A

EQ EQ
BA BBB B

⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

i uY Y
Y u

i uY Y
 (1) 

 
All admittance matrices are collected to the 

terminal-admittance-matrix TY . 
 

EQ,1

T

EQ,x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y
Y

Y

0

0
 (2) 

 
The nodal-admittance-matrix can now be built 

 
T

KK TKT KT= −Y K Y K   (3) 
 
 

4 Calculation of switch state 
dependent admittance matrices 

As mentioned above the intention of fault matrix 
method is to modify admittance matrices. To model 
switching operations a switch state matrix F  of the 
same size as TY  is necessary and is build in the 
same manner since for each terminal a switch state 
matrix EQ,TF is needed. A one on its main diagonal 
represents a closed switch at the corresponding 
terminal whereas a zero indicates an open one. 
Table 1 shows matrices of some common switch 
states. 
 
Table 1: Switch state matrices 

state switch state matrix 

all closed EQ,T

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  

1LO: L1 EQ,T

0 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  

2LO: L2, L3 EQ,T

1 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  

3LO EQ,T

0 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  

 

EQ,1

EQ,x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F
F

F

0

0
 (4) 

 
With these state matrices and the voltages across 
the switches the voltage constraint can be defined. 

 
1 F,1

x F,x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

F u

F u
0  (5) 

 
According to equation (5) the second constraint 
concerning terminal currents is given in 
equation (6). 
 

T
1

T
x

F,1EQ,1 F,1

F,xEQ,x F,x

⎡ ⎤−
⎢ ⎥

×⎢ ⎥
⎢ ⎥−⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥× − =⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎩ ⎭

E F

E F

i Y u

i Y u
0

 (6) 

 
Terminal currents are assumed to be zero at open 
switches so switch admittances FY  are negligible 
during further investigations.  

Equation (1) is extended with the voltage 
constraint resulting in 
 

EQ,1EQ,1 EQ,1 F,1

EQ,xEQ,x EQ,x F,x

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

i Y u u

i Y u u
 (7) 

 
or more concisely 
 

{ }TT T F= −i Y u u  (8) 
 
Now terminal currents in equation (6) are 
eliminated by inserting equation (7). Using the 
auxiliary matrices 
 

T
1 EQ,1

F1
T

x EQ,x

EQ,1 1

F2

EQ,x x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

F Y
Y

F Y

Y F
Y

Y F

 (9) 
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and 
 

[ ]
T

1
1

FF F1 T F2
T

x

−

⎡ ⎤−
⎢ ⎥= − + ⎢ ⎥
⎢ ⎥−⎣ ⎦

E F
Z Y Y Y

E F
(10) 

 
the voltages across the switches can be calculated. 
 

F,1 EQ,1

FF T

F,x EQ,x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

u u
Z Y

u u
 (11) 

 
Equation (11) is inserted into equation (7) resulting 
in 
 

{ }
T T FF TT T T

T FF T T  
= −

= −

i Y u Y Z Y u
E Y Z Y u

 (12) 

 

containing the modified admittance matrix T
′Y : 

 

{ }T T FF T
′ = −Y E Y Z Y  (13) 

 
The nodal admittance matrix can now be 

calculated according to equation (3) 
 

T
KK TKT KT
′ ′= −Y K Y K   (14) 

 
One can see that it is possible to engage or 

disengage an arbitrary number of switches without 
increasing calculation effort. 
 
 
5 Single-phase model 
Assuming a balanced power system and balanced 
switching a single-phase system model is used to 
simplify calculation.  
 

 
Fig. 2: single-phase quadrupole 
 
Equation (1) is simplified to 
 

A AA AB A
EQ EQ

B BA BB B

UI Y Y
UI Y Y
⎡ ⎤⎡ ⎤ ⎡ ⎤

= =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Y u  (15) 

 
and the terminal switch state matrix is reduced 
to either 1 if the switch is closed or 0 if it is 
disengaged.  

Calculation of terminal admittance matrices is 
done analogously as described above. Due to only 
two switches per quadrupole the number of 
possible equipment admittance matrices is reduced 
to four, shown in Table 2. 

 
Table 2: equipment admittance matrices 
Switch 

A 
Switch 

B EQF  
EQ
′Y  

closed closed 
1 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 AA AB

BA BB

Y Y
Y Y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

open closed 
0 0
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 AB BA
BB

AA

0 0

0 Y YY
Y

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 

closed open 
1 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
AB BA

AA
BB

0

0 0

Y YY
Y

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

open open 
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
0 0
0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
 

6 Simple Example 
Given is a simple balanced grid with four nodes 
shown in Fig. 3 with four identical lines. Their 
parameters are displayed in table 3 and the grid 
matrices in equation (16) ff. A load of 100 MW is 
attached to node 4. Node 1 is used as slack.  

 

 
Fig. 3: simple example grid 

 
Table 3: line parameters 
length 10 km 
r′  0.2 / kmΩ  
x′  0.4 / kmΩ  
c′  10 nF/ km  

AU  

AI  BI  

BU
EQY  

A B 3 4 

1 2 

3 4 

5

6

7

8

1 2 
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KT

1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

K  (16) 

 

T,
0.1 j0.2 0.1 j0.2 1
0.1 j0.2 0.1 j0.2i
− − +⎡ ⎤

= ⎢ ⎥− + − Ω⎣ ⎦
Y  (17) 

 
T,1

T,2
T

T,3

T,4

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y
Y

Y
Y

Y

0 0 0
0 0 0
0 0 0
0 0 0

 (18) 

 

KK

2 j4 1 j2 1 j2 0
1 j2 2 j4 0 1 j2 0.1
1 j2 0 2 j4 1 j2

0 1 j2 1 j2 2 j4

− + − −⎡ ⎤
⎢ ⎥− − + −⎢ ⎥=
⎢ ⎥− − + − Ω
⎢ ⎥

− − − +⎣ ⎦

Y (19) 

 
A power flow calculation returns the following 

results. 
 

K T

266.97
267

110 267
109.05 267.01

 kV, A
109.05 266.97
108.11 267

267
267.01

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u i  (20) 

 
Now the switch at terminal 4 is opened. This 

results in the following changes to the grid 
matrices. 

 
1

1
1

0
1

1
1

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  (21) 

 
5

T,2
j3.142 0 10

0 0

−⎡ ⎤
= ⎢ ⎥ Ω⎣ ⎦

Y  (22) 

 

KK

2 j4 1 j2 1 j2 0
1 j2 2 j4 0 1 j2 0.1
1 j2 0 1 j2 0

0 1 j2 0 1 j2

− + − −⎡ ⎤
⎢ ⎥− − + −⎢ ⎥=
⎢ ⎥− − + Ω
⎢ ⎥

− − +⎣ ⎦

Y (23) 

 
The new power flow calculation results can be 

seen below. 

K T

544.58
544.67

110 2
107.94 0

kV,      A
110.02 3.99
105.99 1.99

544.67
544.71

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u i  (24) 

 
7 Conclusion 
The fault matrix method offers a quick, simple and 
systematic way to model power transmission 
system switches by modifying terminal admittance 
matrix coefficients. Main advantages compared to 
conventional methods are 
 The grid topology is switch state independent. 
 Open switches are not approximated by high 

impedances. 
 Numerical problems are bypassed. 
 Calculation complexity is not affected by the 

number of coexistent open switches. 
 Need of only one algorithm to be able to model 

all kinds of balanced and unbalanced faults and 
switch states. 
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