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Abstract. -An adaptive control scheme for mechanical manipulators is proposed. The control loop consists of a 
network for learning the robot’s inverse dynamics and on-line generating the control signal. Some simulation 
results are provided to evaluate the design.  A supervisor is used to improve the performances of the system 
during the adaptation transients. The supervisor exerts two supervisory actions. The first one consists of 
updating the free-design adaptive controller parameters so that the value of a quadratic loss function is 
maintained sufficiently small. The second supervisory action consists of an on-line adjustment of the sampling 
period within an interval centered at its nominal value.  
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1. Introduction 

The problem of designing adaptive control laws for 
rigid robot manipulators has interested researchers for 
many years. The development of effective adaptive 
controllers represents an important step towards high-
precision robotic applications. In recent years, 
adaptive control results for robotic systems have 
included rigorous stability analysis (see, for instance, 
[1-5]). It is important the achievement of good 
transient performances when synthesizing adaptive 
control laws. Particular useful tools for that purpose 
are the on-line updating of the free parameters of the 
adaptation algorithm and the on-line generation of the 
sampling period so that the tracking error be 
improved during the transient. In this paper, an 
adaptive control scheme for mechanical manipulators 
is presented that takes advantage of the relationships 
between adaptive and neural controllers. The 
synthesized controller involves the use of a supervisor 
to improve the transient performances since such a 
strategy was proved to be useful in classical problems 
of adaptive control to improve the adaptation 
transients, [6-7]. The proposed supervisory scheme, 
which is the main contribution of this paper, consists 
of two major actions, namely: (1) An on-line updating  
procedure  of  one of  the free-design parameters of  
the  estimation  algorithm. An optimization horizon 
including a  set of samples including  past  
measurements and,  eventually,  tracking error 

predictions is considered. (2) The sampling period is  
time-varying and generated from an updating 
sampling law as dependent of the tracking error rate.  
 
2. Problem Formulation 
The vector equation of motion of an n-link robot 
manipulator can be written as 

τ = M(Θ) Θ&& + V(Θ, Θ& ) + G(Θ) + F(Θ, Θ& )       (1) 
which is is an nx1 vector of joint torques; Θ, Θ&  and 
Θ&&  are the nx1 vectors of joint positions, speed and 
accelerations, respectively; M( Θ ) is the nxn mass 
matrix of the manipulator; V( Θ , Θ& ) is an nx1 vector 
of centrifugal and Coriolis terms; G ( Θ ) is an nx1 
vector of gravitational terms and F( Θ , Θ& ) is an nx1 
vector of friction terms. The equations of motion (1) 
form a set of coupled nonlinear ordinary differential 
equations which are quite complex, even for simple 
manipulators. One of the most widely used techniques 
to design a trajectory following control system for 
such a device is the so-called computed-torque 
control using feedback linearization. The method 
consists in a nonlinear model-based feedback to 
compensate for the nonlinearities present in the robot 
(see Fig. 1). A nonlinear inner loop decouples and 
linearizes the robot’s dynamics in such a way that a 
linear outer loop can be used to efficiently control the 
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resulting linear system to track a desired trajectory 
Θ d, Θ& d, Θ&& d. 
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Figure 1.  Model-based   feedback linearization 
control scheme 

A frequently used computed-torque control scheme is 
shown in Fig. 1 where N (. , .) is a nonlinear block 
which includes nonlinear effects on the plant. From 
the block diagram, the nonlinear, model-based control 
law is found to be: 

ˆ τ = ( )Θ&&M̂ τ’ + ( )ΘΘ &,V̂ + ( )ΘΘ+Θ &,F̂)(Ĝ   

where )(M̂ Θ&& , ),(V̂ ΘΘ & , ˆ G (Θ) , ( )ΘΘ &,F̂ are 

estimates of M( Θ ), V( Θ , Θ& ), G( Θ ), F( Θ , Θ& ), 
respectively, where ˆ τ  is identical to τ  in (1) with the 
parameters being replaced by their estimates and Θ ’ 
has been calculated as: 

τ ′ = Θ&& d + Kv E& + Kp E                                     (2) 
with Kv and Kp being nxn constant diagonal matrices 
and the servo error E defined as E = Θ d − Θ .The 
error torque becomes: 
˜ τ k = τ k − ˆ τ k

( ) ( ) ( ) ( ) dd M~EM~M~EM̂ ΘΘ−Θ+ΘΘ+Θ= &&&&&&&&&& (3)   
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Figure 2.Computed-torque control scheme 

 
(2) using (3) and then substituting in the second-order 
differential equation obtained from (4) the closed- 
loop dynamics equation is found to be: 

)(M̂EKEKE 1
pv Θ=++ −&&& [ ]),(F~)(G~),(V~)(M~ ΘΘ+Θ+ΘΘ+ΘΘ &&&&   (4) 

where the modeling parametrical errors are ; 
 
˜ M Θ( )=M( Θ )- ˆ M (Θ)  

),(V),(V~ ΘΘ=ΘΘ && - ˆ V (�, Θ& ) 
˜ G (Θ)=G( Θ )- ˆ G (Θ)                                     (5) 

),(F~ ΘΘ & =F( ΘΘ &, )- ),(F̂ ΘΘ &  
If all the robot’s parameters are perfectly known, the 
closed loop equation (5) takes the following linear 
and decoupled form since the terms in the right-hand 
side brackets of  (5) become zero: 

0EKEKE pv =++ &&&                                              (6) 
so that it becomes clear that a simple suitable 
selection of Kp and Kv can easily regulate the 
evolution of the servo error. However, although some 
parameters of a robot are easily measurable, some 
other effects, such as friction, mass distribution or 
payload variations cannot, in general, be accurately 
modeled, and thus the assumption of obtaining 
negligible modeling errors is quite unrealistic in 
practice. In these conditions, it looks apparent that 
some sort of adaptive parameter estimation 
mechanism should be included in the control loop, so 
that equation (5) became approximately linear and 
uncoupled and the servo errors could be 
asymptotically eliminated. 
 
3. Adaptive Control Scheme 
The equations of motion (1), although quite complex 
and nonlinear in general, can be expressed in a linear 
in the parameters form, since all the potentially 
unknown parameters (link masses, lengths, friction 
coefficients, etc.) appear as coefficients of known 
functions of the generalized coordinates. In an 
adaptive control system design context, one usually 
takes the advantage of the above property of linearity 
in the parameters by rewriting (1) as: 

M( Θ ) Θ&& + V( Θ , Θ& ) + G( Θ ) + F( Θ , Θ& )  

           = W( Θ , Θ& , Θ&& ) P                                   (7) 
where P is an rx1 vector containing the robot’s 
unknown parameters and W( Θ , Θ& , Θ&& ) is an nxr 
matrix of known nonlinear functions, often referred to 
as regression matrix. In the same way, the rx1 
estimated parameters vector ˆ P  fulfill 

M~ ( Θ ) Θ&& + ˜ V ( Θ , Θ& )+ ˜ G ( Θ )+ F~  ( Θ , Θ& ) M~ ( Θ ) 

                 = W ( Θ , Θ& , Θ&& ) ˜ P                           (8) 
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where the parameter estimation error ˜ P  has been 
defined as ˜ P = P - ˆ P .  Figs. 2 and 3 show the 
adaptive control scheme. The design is a neural 
extension of the computed-torque control strategy. A 
two-layered learning network with nxr inputs and n 
outputs is used to learn the manipulator’s inverse 
dynamics, so that the control law can be on-line 
generated. The network’s inputs are known nonlinear 
functions of the system response (more concretely, 
the elements wij of the regression matrix W 
( Θ , Θ& , Θ&& ) are defined in eqn. (7)), while its outputs 
are estimates of the input torques: 

ˆ τ ( t ) = ˆ τ k  = 
kj

r

1j
ij

n

1i

p̂),,(w∑∑
==

ΘΘΘ &&&          (9) 

for  t ∈ t k , t k +1[ )  which is a piecewise constant 
signal from the zero-order sampling and hold device. 
Defining the connection weights vector and the 
estimated torques vector as: 

ˆ P = ˆ p 1, ˆ p 2 , ..., ˆ p r[ ]T ; ˆ τ = ˆ τ 1, ˆ τ 2 , ..., ˆ τ n[ ]T                                
Eqn. 10 can be expressed in a familiar matrix form: 

ˆ τ k  ( t ) = ˆ τ k  = W ( Θ , Θ& , Θ&& ) ˆ P k           (10) 

for  t ∈ t k , t k +1[ ) where ˆ P k  is a parameter vector 
which is estimated in a discrete-time way, i. e. , it is 
only  updated at sampling instants by the adaptation 
algorithm. The inverse dynamics is learned as 
follows: 

ˆ P k+1 = ˆ P k +
F kW k

T E τk

c k + W k F k W k
T

            (11) 

(
T
kkkk

kk
T
kk

k
k

1k
WFWc
FWWF

F1F
+

−
λ

=+ )                            (12) 

where Eτk is the prediction error vector, defined as 

=τ kE k
~τ−  = kkˆ τ−τ , W T

k ( . )  is the 
regression matrix used for updating the parameters,  
and  F k  is  an adaptation gain matrix which satisfies 

F 0 = F 0
T > 0. The parameter sequence kλ  ∈(0,1) 

is the forgetting factor used to update the adaptation 
gain matrix and ck ∈  (0, ∞ ) is a scalar for all k ≥  0. 
Both free parameters of the algorithm have to satisfy 
the given stability constraints in order to achieve 

closed-loop stability. The matrix sequence obtained from 
(12) is positive definite (at the limit it can become 
semidefinite) and time- decreasing. The norms taken in (12) 
are the Euclidean norms. The above approach is then used 
in the simulated example to evaluate the supervision  
efficiency. If the manipulator’s inverse dynamics is 
correctly learned by the neural network, both nonlinear 
dynamics cancel each other according to the block diagram 
shown in Fig. 3. Thus, the closed-loop system turns linear 
and the closed-loop tracking properties are adjusted with a 
suitable selection of the proportional and derivative gain 
matrices Kp, Kv. This is the same effect obtained using the 
conventional adaptive control approach described in the 
previous section. 
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Figure 3. Proposed neural control scheme 

 
4.   Supervisor Design 
4.1. Heuristic Motivation  
 Note, by inspection, that the learning rule associated 
with the adaptation algorithm (11)-(12) has an 
adaptation rate  highly  dependent on the size of the c 
k - updating parameter  which is a free- design 
parameter provided that it is positive and bounded. 
The adaptation rate is very low when the c k-
sequence takes very large values compared to the 
square of the regressor norm. A second action of the 
supervisor is concerned with the on-line choice of the 
sampling period within an interval centered around a 
nominal sampling period. The boundary of the 
variation domain of the sampling period is established 
according to  ´a priori´ knowledge about guaranteeing 
closed- loop stability and a prefixed bandwidth. Other 
considerations as, for instance, the  upper limit of the 
sampling rate or the achievable performance of the 
application at hand . The overall supervisor is 
designed for: (1) An on-line calculation of a free 
parameter of the adaptation algorithm. (2) A 
calculation of a time-varying sampling period 
dependent on the time variation of the tracking error.    
It is based upon three main rules, namely: 
 
Rule 1 :  If   the  tracking   error  is   increasing  with  
respect  to  preceding  samples  then  decrease  
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(increase ) the last  value  of the  sequence of the free 
- design  parameter  provided that  the  previous  
action at the preceding sample was  to   increase  ( 
decrease ) the value of such a sequence. 
[In other words, if the tracking performance is 
deteriorating then make an action to correct the 
supervision philosophy of the last action  exerted on 
the  value of the free parameter f the algorithm]. 
Rule 2 :   If   the  tracking   error  is   decreasing  with  
respect  to  preceding  samples  then  decrease  ( 
increase ) the last  value  of the  sequence of the free 
design  parameter   provided   that  the  previous  
action   was   to   decrease ( increase)  it .  [In other 
words, if the tracking performance is being improved 
then do not modify the last action exerted on the  
value of  the  free parameter ]. 
 
Rule 3: Compute a time- varying updated sampling 
period as being inversely proportional to the absolute 
value of the tracking error time-derivative within a 
predefined interval: 
 
[T min , T max] =[T 0 − Δ T, T 0 + Δ T]        (13) 

centred around a prefixed nominal sampling period 
T 0 . Thus, the sampling period decreases as the 
tracking error absolute value grows faster and vice 

versa,. In Rule 3, 
Δ T
T 0

 has to be small since the 

discrete parameterization of the plant is time- varying 
under time- varying sampling. Thus, small variations 
of the sampling period lead to small deviations of the 
plant parameterization from time- invariance and the 
estimation algorithm is still valid in practical 
situations. This is the philosophy used in this paper to 
design the admissibility domain of the sampling 
period. Another useful variation would be, for 
instance, to use a time- varying  whose length 
decreases asymptotically converging to the nominal 
sampling period;  i.e., [ ])k(T,)k(T maxmin  is designed so 
that Tmin(k)→T0 and Tmax(k)→T0 as  k→ ∞ . On the 
other hand, Rule 3 can also be modified by involving 
higher- order time - derivatives of the tracking error. 
The above three actions are completed with the 
design philosophies:  
 (1) The sizes of the modifications in the successive 
values of the ck - sequence of the parameter adaptive 
algorithm are related to the  ‘amplitudes‘ of the 
improvement or deterioration of the transient 
performances within the stability constraints for the 
design parameter c k with  its values being positive 
and  bounded.   

 (2) It is better to analyze the transient tracking errors 
over a finite horizon of preceding samples and, 
eventually, also on a finite horizon of its future 
predictions over each current sample in order to 
include both a correcting and a  predictive-correction  
effects of registered tracking errors  to calculate the 
current  value of the sequence of free- design 
parameters.  The use of a unique sample in the 
supervisory loop would lead, in general, to unsuitable 
actions  when measurement failures arise or when  
abrupt changes in the control input  appear art 
isolated sampling instants .   
 
4.2. Supervisory action on a free - design 
parameter  of the  adaptation  algorithm 

Define the loss function Jk
ε= σ k−i

i=k−N1

k+N2

∑ Ei
TQi Ei  , for 

each current  k - th sample as supervisory criterion 
where  E (.) =[  E 1 (.)  ,  E 2 (.)  ,  E 3 (.)  ] 

T is the 
tracking error vector,  N 1 and  N2  are , respectively,  
the sizes of the correction and prediction horizons [ k 
- N 1, k ) and [ k ,  k +  N2  ] associated with the 
current k - th sample , Q ( . ) is a (at least) positive 
semidefinite weighting matrix and  10 ≤σ<  is the 
forgetting factor of the loss function .  Note that  E j  
for   j > k  are predicted tracking errors  in the loss 
function for each k - th sample. In this paper, the free 
design parameter in (13) is c k  which has to belong to 
an admissibility interval compatible with the stability 
constraint, i. e. it has to be positive and bounded . The 
horizon sizes, weighting matrix and forgetting factor 
of the loss function are chosen by the designer 
according to the next  design  criteria : (a) How 
relatively important each robot articulation is 
compared to the remaining ones. This idea is relevant 
top the choice of the Q ( . )- matrix.  In Fig. 4, the 
third articulation could be considered more important, 
if suited, since it has to follow a reference related to 
the final trajectory for each specific application. If the 
matrix is chosen as diagonal with positive identical 
diagonal entries then all the articulations are 
considered equally relevant and then all the tracking 
error components are introduced with identical 
weights in the supervisory loss function.  
  (b) The relative weight  in  the loss  function given  
to the more  recent  measured   errors  and their  next  
immediate  predictions is large compared to the older 
ones and subsequent future ones,  respectively. 
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  (c) The relative weight  in  the loss  function given  
to the  past  tracking  errors (correction  horizon)  
compared   to the  predicted  errors  ( prediction 
horizon) . The supervisory action over c k  is 
described in the following algorithm: 
 
4.3 Supervision  of   c k  
Step   0 :  Define  c min , c max[ ] with c min > 0   , 
c max > c min >0  as the admissibility domain for  the 
free parameter c k  of the adaptation algorithm (13) . 
Define also the loss  function  J  according to the 
above supervisory design criteria (a) to (c). 
Initialize k  →  0. 
Step   1  :   For each current  k-th  sampling instant,  
Make c k = ρ k W k F k W k

T + c  

c k =

c min if c k ≤ c min

c k if c k ∈ c min , c max( )

c max if c k ≥ c max

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

ρk =ρk −1 + Min(gk , Int.part[
Jk −Jk −1

Jk −1
]). Sign[ρk−2 −ρk−1]. Δρ

   ;   gk =
K− c 

Wk Fk Wk
T Δρ

with sign (0 ) = 0 . 

Step  2 :   Apply  the parameter -estimation algorithm 
of Eqn. (13) and Generate the torque  Eqn. ( 2 ) . 
Step  3 :  k → k  and then  Go  to  Step 1.   End                                                     
If the loss  function value  decreases  the  supervisory  
policy  has  to be  kept .  The saturation g k  for the 
modification  of  Θ  k   in Step 1  guarantees  that ck  
is upper-bounded by a  predefined positive design 
constant  K . The small positive constant c  is used to 
avoid division by zero in the parameter estimation 
(13) when the measurement regressor is zero. The 
supervisory learning rule also ensures, apart from the 
above mentioned saturation, that the eventual 
corrections on the choice of the parameters increase 
as the efficiency deteriorates.  
 
4.4  Error  Prediction  
The measurements of the loss function in the 
prediction horizon are calculated by extrapolations of 
preceding predictions or real measurements by using 
a Taylor series expansion approximations with finite 
differences  using sampled values according to:

 f k+1≅
Tif k

(i)

i!
i=0

∞

∑ = f k +(f k− f k−1)+
1
2

(f k− f k−1+ f k+2)  

with T being the sampling period  for any signal f ( t ) 

and the  i- th derivative f k
( i)  being defined 

recursively from f k
(1) =

f k − f k− 1

T
 for  i ≥ 1 .  Note 

that even in the case when the predictions are very 
rough, this is not very relevant for the supervisory 
algorithm efficiency because of the saturation effect 
included in Step 1.  In this context,  it   is   suitable  to  
have  acceptable   predictions  of  the  signs of  the  
next  tracking errors  for each current sample  rather  
than  good estimations of their real values .  A simple 
estimation procedure as the proposed one can be 
sufficient as shown through simulations in Section 5. 
3. It is also important to find an efficient balance 
between the sizes of the correction and prediction 
horizons Numerical experimentation involving 
different sizes of the correction and prediction 
horizons will help the designer in the choice of their 
more convenient values. 
  
4.5  Supervisory action on the  sampling  rate ( i. e.  
On-line updating rule for the time-varying 
sampling period   T k  ) 
The sequence of sampling instants { t  k , k ≥ 0} is 
generated as  t k +1 = t k + T k  with t 0  = 0  and  

 T k  as follows: 

T k =

T min if T k ≤T min

T k =
CT k−1

ε k −ε k−1

if T∈ [T min,T max]

T max if T k ≥T max

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

                  (14)    

where a discrete approximation
)t(

TC
T

k

1k
k ε

= −

&
  is used 

by monitoring the tracking error rate and C > 0 is an 
arbitrary real constant. The admissibility interval 

T min , T max[ ] of  the sampling period is selected 
according to considerations of stability, bandwidth 
and the requirements on performance of each 
particular application. The above sampling law is 
tested in the simulations to evaluate the performance 
improvement of the sampling rate updating for the 
transient adaptation.  The above sampling law as well 
as other five updating sampling laws listed below are 
then comparatively tested in the simulations to 
evaluate the various improvements caused by the 
sampling rate adaptation over the basic free-
parameter adaptation. The supervisory technique can 
be also applied to the forgetting factor by making it 
time-varying  with λ k ∈ 0,1( ] to ensure closed-loop 
stability of the adaptive scheme. A useful technique is 
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to modify the Supervision Algorithm of Section 4.2 to 
on-line estimate the forgetting factor which has to 
belong to the admissibility domain 

λ min , λ max[ ]= δ , 1 − δ[ ) for some constant δ ∈ (0 , 1) 

with the change c →λ > 0 and Step 2 is modified 
with the replacement  c k→λ k =ρk λ k−1 +λ  with ρ k  
being computed as above and  

λ k =

λ min if λ k ≤ λ min

λ k if λ k ∈( λ min , λ max)

λ max if λ k ≥ λ max

⎧ 

⎨ 

⎪ ⎪ 

⎩ 

⎪ 
⎪ 

 

Subsequently  , the free parameter of the adaptive 
algorithm c k  is chosen according to the rule 

   c k = 
λ k W k F k W k

T

T r (1− λ k −δ )
  

with Tr ≥Trace(F0)≥ Trace(Fk ) > 0. Such a rule ensures 
that the trace of the adaptation matrix remains upper- 
bounded by a prefixed finite bound T r  for all time in 
spite of the fact that the adaptation gain matrix is not 
necessarily time- decreasing.. The closed-loop system is 
proved to be stable under the above parameter- adaptive law 
and supervision rules, [7].                                                       
 
 5.Simulation Example 
A planar mechanical manipulator with three revolute joints 
is considered. We take SI units: m1=4.6; m2=2.3; m3=1.0; 
Izz=0.1;  l1=l2=0.5;  v1=v2=v3=0.5 ;   k1=k2=k3=0.5 
where vi and ki are the viscous and Coulomb friction 
coefficients, respectively. The free-design parameter c k  
and the sampling period are supervised together with values 

Θ k = 1 in (13b) , c = 5 , 5cmin=  , 7
max 105c ×=  and c 

0 = 5× 10
6

 have been chosen in the learning rule (13) . In 

the absence of supervisor, c k = c 0 = 5× 10
6

,  for all k ≥  

0 . The Θ weighting matrix of the loss function J ε
 is  Q ( 

. ) = Diag [ 0.2 , 0.2 , 0.2  ]  for the samples of the 
prediction horizon  and Q ( . ) = Diag [ 0.9 , 0.9 , 0.9  ] for 

those of the correction horizon ; 5.0=σ ; K=10 ( Step 2 of 
the Supervisory Algorithm of Section 4.b) ; 5c = , 

ρ 0 =2 and 1.0=ρΔ . The  correction and prediction 

horizons  are chosen with 5N 1 = and 2N 2 = . The 
network’s connection weights have been initialized as 
ˆ p 10=10, ˆ p 20=5 , ˆ p 30=1, ˆ p 40=1 . The values for the 
proportional and derivative gain matrices Kp = Kv  = Diag 
(100, 100, 100). Acceptable values of the maximum and 
minimum values of the admissibility interval of the 

sampling period are until −
+ 20 % of its nominal value. The 

nominal sampling period is T0= 0.6× 10 −3 secs. with 
variation domain T min ,T max[ ]= 0.5,0.7[ ] with C=1. 
Simulation results about the supervised and unsupervised 
tracking performance and the control effort are displayed on 
Figure 4. See [7] for the scheme´s design details and 
exhaustive performed numerical experimentation 

 
Figure 4.  Combined Supervision Performance 
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