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Abstract: - An adaptive neural network control scheme for thermal power system is described. No off-line 

training is required for the proposed neural network controller. The online tuning algorithm and neural 

network architecture are described. The performance of the controller is illustrated via simulation for different 

changes in process parameters. Performance of neural network controller is compared with conventional 

proportional-integral control scheme for frequency control in thermal power systems. 
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1   Introduction 
This paper deals with the neural network (NN) 

frequency controller for isolated thermo power 

system. Frequency control becomes more and more 

important as power systems enter the era of 

deregulation. It is becoming very hard, if not 

impossible to schedule loads precisely. Emerging 

market of ancillary services means that primary 

controllers and turbines that are used in secondary 

control change constantly. These changes pose a 

problem when conventional control schemes are 

used. 

      The literature about frequency and load – 

frequency control is numerous ([1], [2], [3], [4], [5], 

[6], [7] and many others). Many non-adaptive 

schemes are given in [1], [2], [3], [4], [5] and [6]. A 

self-tuning adaptive controller is given in [7]. 

However, the modern power systems in deregulated 

environment are subject to often parameters changes 

that may diminish the quality of control when 

nonadaptive controllers are used. NN load-

frequency control is described in [8], [9] and [10]. 

The results obtained by using NN controllers are 

good. However, the described controllers require 

training. There are many well-developed training 

algorithms for NNs, but in the case of power system 

the training has to be done using models and ther4e 

is always a danger of not having NN properly 

trained. We provide here a performance analysis of 

adaptive NN controller that does not require 

training. The neural network is capable of on-line 

learning. Stability proofs for this control scheme can 

be found in [30]. 

     The paper is organized as follows. In Section 2 

are given some mathematical preliminaries. Model 

of isolated thermo power system is given in Section 

3. Neural network control scheme is described in 

Section 4. In Section 5 the simulation results are 

given and the conclusion is given in Section 6. 

 

 

2   Mathematical Preliminaries 

Let R  denote the real numbers, 
nR  the real n-

vectors, 
mxnR  the real mxn matrices. Let S  be a 
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compact simply connected set of 
nR ., With map 

mRSf →: . let us define )(SC m
 the space such 

that f  is continuous. Let •  be any suitable vector 

norm. The supremum norm of )(xf  over S  is 

defined as: 

 

)(sup xf , mRSf →: , Sx∈∀  (1) 

 

     Given 1NRx∈ , a two-layer NN (Fig. 1) has a net 

output given by 

 

x)σ(VWy TT=  (2) 

 

where [ ]TNxxx
111 ⋅⋅⋅= , [ ]TNyyyy

321 ⋅⋅⋅=  and 

)(•σ  the activation function. If [ ]Tzzz ⋅⋅⋅= 21
, we 

define [ ]Tzzz ⋅⋅⋅= )()()( 21 σσσ . Including "1" as a 

first term in )( xV Tσ  allows one to incorporate the 

tresholds as the first column of TW . Then any tuning 

of NN weights includes tuning of thresholds as well. 
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Fig.1. Two layer neural network 

 

     The main property of NN we are concerned with 

for control and estimation purposes is the function 

approximation property ([16], [20]). Let )(xf  be a 

smooth function from 
mn RR → . Then it can be 

shown that if the activation functions are suitably 

selected, as long as x  is restricted to a compact set 
nRS ∈ , then for some sufficiently large number of 

hidden-layer neurons L, there exist weights and 

thresholds such one has  

).()()( xxVWxf TT εσ +=  (3) 

The value of ( )xε  is called the neural network 

functional approximation error. In fact, for any 

choice of a positive number Nε , one can find a 

neural network such that Nx εε ≤)(  for all Sx∈ . 

     Also, it has been shown that, if the first-layer 

weights V are suitably fixed, then the approximation 

property can be satisfied by selecting only the output 

weights W for good approximation. For this to occur 

)()( xVx Tσϕ =  must be a basis [16]. 

     If one selects the activation functions suitably, 

e.g. as sigmoids, then it was shown by Igelnik and 

Pao [19] that )( xV Tσ  is a basis if V  is selected 

randomly. Only the output weights W are tuned.  

 

 

3   Isolated Thermopower System 
The model of isolated thermo power system is 

shown in Fig. 2. 
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Fig. 2: The model of isolated thermo power system 

 

The transfer functions in the model are: 
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where Gg, Gt and Gs are representing turbine 

governors, control turbines and the power system 

respectively. Such models are described in more 

details in [1], [2], [3], [4], [5], [6], [7] and many 

others. It is also shown that the system in Fig. 2 is 

always asymptotically stable if R is positive number. 

The system is linear and the need for adaptive 

control or use of the function approximation 

property of the neural network is not obvious since 

there are no nonlinearities in the controlled plant. 

     However, all the parameters can and do change 

during the operation. Thus, it is conceivable that 

adaptive control scheme would perform better than 

nonadaptive. It can be said that in our design NN 

tries to approximate the whole controlled system and 

to generate the appropriate control action. 

     The most usual way of control is to use linear PI 

controllers. The controller in that case takes the 

change of frequency ∆f as the input and produces 

the control output ∆Pr as output. That signal is fed to 

turbine governors in order to counter the changes 

caused by the change in the load ∆PL. The turbine 
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output is the mechanical power ∆Pm.  

     The system shown in Fig. 2 can be represented in 

state space as 
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(7) 

 

The state vector x is 
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(8) 

 

where yg is output of the turbine controllers. These 

states are physically available, so this representation 

will allow for the NN control scheme design. 

 

 

4   Adaptive Neural Network Control 
The neural network control scheme is shown in Fig. 

3. 
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Fig. 3: NN control scheme 

 

The neural network is built as shown in Section 2. 

The first layer weights are initialized randomly and 

then fixed to form basis ϕ(x). The NN output is 

 
).(xWy Tϕ=  (9) 

 

The proportional gain K is given as 

 
[ ].00 kK =  (10) 

 

     This architecture is an adapted form of the 

tracking NN controller described in [24], [25], [26], 

[27], [28] and numerous other papers. However, 

there are some differences. Namely, here the 

problem is control, not tracking. Also, there is no 

special robustifyng term and instead of PD 

controller parallel to the network only proportional 

controller K is used. Since there are significant time 

constants present in the controlled plant, derivative 

part will not have an effect. At last, unlike in papers 

mentioned above, we don’t use filtered error 

approach. In our scheme the neural network is 

positioned in such way that it tries to approximate 

the controlled plant. 

      It is assumed that the load disturbance ∆PL is 

bounded so that 

 
.ML PP ≤∆  (11) 

 

This assumption is always true as long as we deal 

with the power system in the normal mode of 

operation. If the load disturbance is too big there 

cannot be any control action since in that case the 

system just doesn’t have enough power generation 

capability available. The protection functions take 

over in that case and some loads have to be 

disconnected. 

     Let the control signal be given by 

 

)(xWKxyKxP T

r ϕ+=+=∆

 

(12

) 

 

and the weight updates are provided by 

 

.)( FWxkfxFW w−∆= ϕɺ  (13) 

 

with F any symmetric and positive definite matrix 

and kw positive design parameter. Then, the system 

states x and neural network weight W are ultimately 

uniformly bounded (UUB) and the system is stable 

in Lyapunov sense as long as. 

 

.
,

)(
2

1

4
)(

min

2

2

max

Q

k

D
Pd

x w

M

σ

σ +

>
 

(14) 

 

.
)(

42

max

2

2

W

M

WW k

Pd

k

D

k

D
W

σ
++= . 

(15) 

 

     Thus, the Lyapunov derivative is negative as long 

x and W are outside a compact set, meaning that x 

and W are UUB and the system is stable. The 

detailed proof can be found in [30]. 

 

 

5   Simulation Results 
The simulations were performed for the following 
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srt of parameters: Tq = 0.08 s, Tt = 0.3 s, Ks = 120 

pu/s, R = 2.4 Hz/pu. Parameter k was k = 0.08. The 

neural network had 20 nodes in the hidden layer; 

initial network values were initialized to small 

random values. The network used sigmoid activation 

function. The responses of the system with NN 

control is compared with the usual PI controlled 

system with proportional gain of the controller kp = 

0.08 and integral gain ki = 0.1. 

     The simulation results for changes in the grid 

parameters are shown in Figs 4 – 6. It can be seen 

that NN control scheme out performs conventional 

PI controller in the case of the process parameters 

for which PI design was performed, as well as when 

the parameters change. NN control scheme reacts 

much faster. 

     The control signals of the proportional controller 

and NN for the original simulation case with the NN 

controller are shown in Fig. 7. It can be seen that 

NN takes over the complete control effort, which 

illustrates the ability of NN to approximate the 

whole controlled plant in this case. 

 

 
Fig. 4: The response for the step change in load of 

0.1 pu 

 

Fig. 5: The response for the step change in load of 

0.1 pu with R, Ts, and Ks increased 10% 

 

 
Fig. 6: The response for the step change in load of 

0.1 pu with R, Ts, and K decreased 10% 

 

 
Fig. 7: The control output signals of the proportional 

controller and NN, nominal case 
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Fig. 8: The response for the step change in load of 

0.1 pu and time constants Tg and Tt decreased 10% 
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Fig. 9: The response for the step change in load of 

0.1 pu and time constants Tg and Tt increased 10% 
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Fig. 10: The response for the step change in load of 

0.1 pu and time constants Tg and Tt increased 25% 
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Fig. 11: The control output signals of the 

proportional controller and NN, time constants Tg 

and Tt increased 25% 

 

     Responses for changes of turbine governor and 

turbine parameters are shown in Figs 8. – 10. Again, 

neural network control scheme outperforms the 

conventional controller. Fig. 11 illustrates the fact 

that neural network takes over the control effort in 

this case too. 

 

 

6   Conclusion 
The results of an initial research in neural network 

control of power systems are shown. The simulation 

results show that controller performs well and adapts 

to changing parameters. The controller does not 

require off-line training phase. By defining the 

neural network differently, having output layer 

weights W defined as a matrix this scheme can be 

adjusted to deal with the multivariable systems. The 

performance analysis here shows that it would be 

worth to continue with the research effort toward 

neural network controllers for interconnected 

systems as well as for the systems with generation 

rate constraint. 
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